You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* mean var used in an exercise before intro
* added a sentence clarifying /tmp
---------
Co-authored-by: Yuta Norden <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Copy file name to clipboardExpand all lines: intermediate/xarray_and_dask.ipynb
+14-19Lines changed: 14 additions & 19 deletions
Original file line number
Diff line number
Diff line change
@@ -230,9 +230,6 @@
230
230
"cell_type": "code",
231
231
"execution_count": null,
232
232
"metadata": {
233
-
"jupyter": {
234
-
"outputs_hidden": true
235
-
},
236
233
"tags": []
237
234
},
238
235
"outputs": [],
@@ -246,16 +243,13 @@
246
243
"source": [
247
244
"### Exercise\n",
248
245
"\n",
249
-
"Try calling `mean.values` and `mean.data`. Do you understand the difference?"
246
+
"Try calling `ds.air.values` and `ds.air.data`. Do you understand the difference?"
250
247
]
251
248
},
252
249
{
253
250
"cell_type": "code",
254
251
"execution_count": null,
255
252
"metadata": {
256
-
"jupyter": {
257
-
"outputs_hidden": true
258
-
},
259
253
"tags": []
260
254
},
261
255
"outputs": [],
@@ -331,7 +325,7 @@
331
325
"2. `.load()` replaces the dask array in the xarray object with a numpy array.\n",
332
326
" This is equivalent to `ds = ds.compute()`\n",
333
327
"\n",
334
-
"**Tip:** There is a third option : \"persisting\". `.persist()` loads the values into distributed RAM. The values are computed but remain distributed across workers. So `ds.air.persist()` still returns a dask array. This is useful if you will be repeatedly using a dataset for computation but it is too large to load into local memory. You will see a persistent task on the dashboard. See the [dask user guide](https://docs.dask.org/en/latest/api.html#dask.persist) for more on persisting\n"
328
+
"**Tip:** There is a third option : \"persisting\". `.persist()` loads the values into distributed RAM. The values are computed but remain distributed across workers. So `ds.air.persist()` still returns a dask array. This is useful if you will be repeatedly using a dataset for computation but it is too large to load into local memory. You will see a persistent task on the dashboard. See the [dask user guide](https://docs.dask.org/en/latest/api.html#dask.persist) for more on persisting"
335
329
]
336
330
},
337
331
{
@@ -347,9 +341,6 @@
347
341
"cell_type": "code",
348
342
"execution_count": null,
349
343
"metadata": {
350
-
"jupyter": {
351
-
"outputs_hidden": true
352
-
},
353
344
"tags": []
354
345
},
355
346
"outputs": [],
@@ -446,7 +437,10 @@
446
437
"\n",
447
438
"You can use any kind of Dask cluster. This step is completely independent of\n",
448
439
"xarray. While not strictly necessary, the dashboard provides a nice learning\n",
449
-
"tool."
440
+
"tool.\n",
441
+
"\n",
442
+
"By default, Dask uses the current working directory for writing temporary files.\n",
443
+
"We choose to use a temporary scratch folder `local_directory='/tmp'` in the example below instead."
0 commit comments