-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathmodel.py
133 lines (106 loc) · 5.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from keras.layers import Input
from keras.layers.convolutional import Convolution2D
from keras.layers.core import Activation, Reshape
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from layers import MaxPoolingWithArgmax2D, MaxUnpooling2D
def segnet(input_shape, n_labels, kernel=3, pool_size=(2, 2), output_mode="softmax"):
# encoder
inputs = Input(shape=input_shape)
conv_1 = Convolution2D(64, (kernel, kernel), padding="same")(inputs)
conv_1 = BatchNormalization()(conv_1)
conv_1 = Activation("relu")(conv_1)
conv_2 = Convolution2D(64, (kernel, kernel), padding="same")(conv_1)
conv_2 = BatchNormalization()(conv_2)
conv_2 = Activation("relu")(conv_2)
pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2)
conv_3 = Convolution2D(128, (kernel, kernel), padding="same")(pool_1)
conv_3 = BatchNormalization()(conv_3)
conv_3 = Activation("relu")(conv_3)
conv_4 = Convolution2D(128, (kernel, kernel), padding="same")(conv_3)
conv_4 = BatchNormalization()(conv_4)
conv_4 = Activation("relu")(conv_4)
pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4)
conv_5 = Convolution2D(256, (kernel, kernel), padding="same")(pool_2)
conv_5 = BatchNormalization()(conv_5)
conv_5 = Activation("relu")(conv_5)
conv_6 = Convolution2D(256, (kernel, kernel), padding="same")(conv_5)
conv_6 = BatchNormalization()(conv_6)
conv_6 = Activation("relu")(conv_6)
conv_7 = Convolution2D(256, (kernel, kernel), padding="same")(conv_6)
conv_7 = BatchNormalization()(conv_7)
conv_7 = Activation("relu")(conv_7)
pool_3, mask_3 = MaxPoolingWithArgmax2D(pool_size)(conv_7)
conv_8 = Convolution2D(512, (kernel, kernel), padding="same")(pool_3)
conv_8 = BatchNormalization()(conv_8)
conv_8 = Activation("relu")(conv_8)
conv_9 = Convolution2D(512, (kernel, kernel), padding="same")(conv_8)
conv_9 = BatchNormalization()(conv_9)
conv_9 = Activation("relu")(conv_9)
conv_10 = Convolution2D(512, (kernel, kernel), padding="same")(conv_9)
conv_10 = BatchNormalization()(conv_10)
conv_10 = Activation("relu")(conv_10)
pool_4, mask_4 = MaxPoolingWithArgmax2D(pool_size)(conv_10)
conv_11 = Convolution2D(512, (kernel, kernel), padding="same")(pool_4)
conv_11 = BatchNormalization()(conv_11)
conv_11 = Activation("relu")(conv_11)
conv_12 = Convolution2D(512, (kernel, kernel), padding="same")(conv_11)
conv_12 = BatchNormalization()(conv_12)
conv_12 = Activation("relu")(conv_12)
conv_13 = Convolution2D(512, (kernel, kernel), padding="same")(conv_12)
conv_13 = BatchNormalization()(conv_13)
conv_13 = Activation("relu")(conv_13)
pool_5, mask_5 = MaxPoolingWithArgmax2D(pool_size)(conv_13)
print("Build enceder done..")
# decoder
unpool_1 = MaxUnpooling2D(pool_size)([pool_5, mask_5])
conv_14 = Convolution2D(512, (kernel, kernel), padding="same")(unpool_1)
conv_14 = BatchNormalization()(conv_14)
conv_14 = Activation("relu")(conv_14)
conv_15 = Convolution2D(512, (kernel, kernel), padding="same")(conv_14)
conv_15 = BatchNormalization()(conv_15)
conv_15 = Activation("relu")(conv_15)
conv_16 = Convolution2D(512, (kernel, kernel), padding="same")(conv_15)
conv_16 = BatchNormalization()(conv_16)
conv_16 = Activation("relu")(conv_16)
unpool_2 = MaxUnpooling2D(pool_size)([conv_16, mask_4])
conv_17 = Convolution2D(512, (kernel, kernel), padding="same")(unpool_2)
conv_17 = BatchNormalization()(conv_17)
conv_17 = Activation("relu")(conv_17)
conv_18 = Convolution2D(512, (kernel, kernel), padding="same")(conv_17)
conv_18 = BatchNormalization()(conv_18)
conv_18 = Activation("relu")(conv_18)
conv_19 = Convolution2D(256, (kernel, kernel), padding="same")(conv_18)
conv_19 = BatchNormalization()(conv_19)
conv_19 = Activation("relu")(conv_19)
unpool_3 = MaxUnpooling2D(pool_size)([conv_19, mask_3])
conv_20 = Convolution2D(256, (kernel, kernel), padding="same")(unpool_3)
conv_20 = BatchNormalization()(conv_20)
conv_20 = Activation("relu")(conv_20)
conv_21 = Convolution2D(256, (kernel, kernel), padding="same")(conv_20)
conv_21 = BatchNormalization()(conv_21)
conv_21 = Activation("relu")(conv_21)
conv_22 = Convolution2D(128, (kernel, kernel), padding="same")(conv_21)
conv_22 = BatchNormalization()(conv_22)
conv_22 = Activation("relu")(conv_22)
unpool_4 = MaxUnpooling2D(pool_size)([conv_22, mask_2])
conv_23 = Convolution2D(128, (kernel, kernel), padding="same")(unpool_4)
conv_23 = BatchNormalization()(conv_23)
conv_23 = Activation("relu")(conv_23)
conv_24 = Convolution2D(64, (kernel, kernel), padding="same")(conv_23)
conv_24 = BatchNormalization()(conv_24)
conv_24 = Activation("relu")(conv_24)
unpool_5 = MaxUnpooling2D(pool_size)([conv_24, mask_1])
conv_25 = Convolution2D(64, (kernel, kernel), padding="same")(unpool_5)
conv_25 = BatchNormalization()(conv_25)
conv_25 = Activation("relu")(conv_25)
conv_26 = Convolution2D(n_labels, (1, 1), padding="valid")(conv_25)
conv_26 = BatchNormalization()(conv_26)
conv_26 = Reshape(
(input_shape[0] * input_shape[1], n_labels),
input_shape=(input_shape[0], input_shape[1], n_labels),
)(conv_26)
outputs = Activation(output_mode)(conv_26)
print("Build decoder done..")
model = Model(inputs=inputs, outputs=outputs, name="SegNet")
return model