Skip to content

Commit d838368

Browse files
committed
add mulXf3 to compiler-rt
this adds the following functions to compiler-rt: * `__mulsf3` * `__muldf3` * `__multf3` See #1290
1 parent 324cbb9 commit d838368

File tree

5 files changed

+388
-1
lines changed

5 files changed

+388
-1
lines changed

CMakeLists.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -662,6 +662,7 @@ set(ZIG_STD_FILES
662662
"special/compiler_rt/floatuntisf.zig"
663663
"special/compiler_rt/floatuntitf.zig"
664664
"special/compiler_rt/muloti4.zig"
665+
"special/compiler_rt/mulXf3.zig"
665666
"special/compiler_rt/multi3.zig"
666667
"special/compiler_rt/popcountdi2.zig"
667668
"special/compiler_rt/truncXfYf2.zig"

std/math.zig

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -593,7 +593,16 @@ fn testRem() void {
593593

594594
/// Returns the absolute value of the integer parameter.
595595
/// Result is an unsigned integer.
596-
pub fn absCast(x: var) @IntType(false, @typeOf(x).bit_count) {
596+
pub fn absCast(x: var) t: {
597+
if (@typeOf(x) == comptime_int) {
598+
break :t comptime_int;
599+
} else {
600+
break :t @IntType(false, @typeOf(x).bit_count);
601+
}
602+
} {
603+
if (@typeOf(x) == comptime_int) {
604+
return if (x < 0) -x else x;
605+
}
597606
const uint = @IntType(false, @typeOf(x).bit_count);
598607
if (x >= 0) return @intCast(uint, x);
599608

@@ -609,6 +618,8 @@ test "math.absCast" {
609618

610619
testing.expect(absCast(i32(minInt(i32))) == -minInt(i32));
611620
testing.expect(@typeOf(absCast(i32(minInt(i32)))) == u32);
621+
622+
testing.expect(absCast(-999) == 999);
612623
}
613624

614625
/// Returns the negation of the integer parameter.

std/special/compiler_rt.zig

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,10 @@ comptime {
2424
@export("__addtf3", @import("compiler_rt/addXf3.zig").__addtf3, linkage);
2525
@export("__subtf3", @import("compiler_rt/addXf3.zig").__subtf3, linkage);
2626

27+
@export("__mulsf3", @import("compiler_rt/mulXf3.zig").__mulsf3, linkage);
28+
@export("__muldf3", @import("compiler_rt/mulXf3.zig").__muldf3, linkage);
29+
@export("__multf3", @import("compiler_rt/mulXf3.zig").__multf3, linkage);
30+
2731
@export("__floattitf", @import("compiler_rt/floattitf.zig").__floattitf, linkage);
2832
@export("__floattidf", @import("compiler_rt/floattidf.zig").__floattidf, linkage);
2933
@export("__floattisf", @import("compiler_rt/floattisf.zig").__floattisf, linkage);

std/special/compiler_rt/mulXf3.zig

Lines changed: 285 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,285 @@
1+
// Ported from:
2+
//
3+
// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
4+
5+
const std = @import("std");
6+
const builtin = @import("builtin");
7+
const compiler_rt = @import("../compiler_rt.zig");
8+
9+
pub extern fn __multf3(a: f128, b: f128) f128 {
10+
return mulXf3(f128, a, b);
11+
}
12+
pub extern fn __muldf3(a: f64, b: f64) f64 {
13+
return mulXf3(f64, a, b);
14+
}
15+
pub extern fn __mulsf3(a: f32, b: f32) f32 {
16+
return mulXf3(f32, a, b);
17+
}
18+
19+
fn mulXf3(comptime T: type, a: T, b: T) T {
20+
const Z = @IntType(false, T.bit_count);
21+
22+
const typeWidth = T.bit_count;
23+
const significandBits = std.math.floatMantissaBits(T);
24+
const exponentBits = std.math.floatExponentBits(T);
25+
26+
const signBit = (Z(1) << (significandBits + exponentBits));
27+
const maxExponent = ((1 << exponentBits) - 1);
28+
const exponentBias = (maxExponent >> 1);
29+
30+
const implicitBit = (Z(1) << significandBits);
31+
const quietBit = implicitBit >> 1;
32+
const significandMask = implicitBit - 1;
33+
34+
const absMask = signBit - 1;
35+
const exponentMask = absMask ^ significandMask;
36+
const qnanRep = exponentMask | quietBit;
37+
const infRep = @bitCast(Z, std.math.inf(T));
38+
39+
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
40+
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
41+
const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
42+
43+
var aSignificand: Z = @bitCast(Z, a) & significandMask;
44+
var bSignificand: Z = @bitCast(Z, b) & significandMask;
45+
var scale: i32 = 0;
46+
47+
// Detect if a or b is zero, denormal, infinity, or NaN.
48+
if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) {
49+
const aAbs: Z = @bitCast(Z, a) & absMask;
50+
const bAbs: Z = @bitCast(Z, b) & absMask;
51+
52+
// NaN * anything = qNaN
53+
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
54+
// anything * NaN = qNaN
55+
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
56+
57+
if (aAbs == infRep) {
58+
// infinity * non-zero = +/- infinity
59+
if (bAbs != 0) {
60+
return @bitCast(T, aAbs | productSign);
61+
} else {
62+
// infinity * zero = NaN
63+
return @bitCast(T, qnanRep);
64+
}
65+
}
66+
67+
if (bAbs == infRep) {
68+
//? non-zero * infinity = +/- infinity
69+
if (aAbs != 0) {
70+
return @bitCast(T, bAbs | productSign);
71+
} else {
72+
// zero * infinity = NaN
73+
return @bitCast(T, qnanRep);
74+
}
75+
}
76+
77+
// zero * anything = +/- zero
78+
if (aAbs == 0) return @bitCast(T, productSign);
79+
// anything * zero = +/- zero
80+
if (bAbs == 0) return @bitCast(T, productSign);
81+
82+
// one or both of a or b is denormal, the other (if applicable) is a
83+
// normal number. Renormalize one or both of a and b, and set scale to
84+
// include the necessary exponent adjustment.
85+
if (aAbs < implicitBit) scale +%= normalize(T, &aSignificand);
86+
if (bAbs < implicitBit) scale +%= normalize(T, &bSignificand);
87+
}
88+
89+
// Or in the implicit significand bit. (If we fell through from the
90+
// denormal path it was already set by normalize( ), but setting it twice
91+
// won't hurt anything.)
92+
aSignificand |= implicitBit;
93+
bSignificand |= implicitBit;
94+
95+
// Get the significand of a*b. Before multiplying the significands, shift
96+
// one of them left to left-align it in the field. Thus, the product will
97+
// have (exponentBits + 2) integral digits, all but two of which must be
98+
// zero. Normalizing this result is just a conditional left-shift by one
99+
// and bumping the exponent accordingly.
100+
var productHi: Z = undefined;
101+
var productLo: Z = undefined;
102+
wideMultiply(Z, aSignificand, bSignificand << exponentBits, &productHi, &productLo);
103+
104+
var productExponent: i32 = @bitCast(i32, aExponent +% bExponent) -% exponentBias +% scale;
105+
106+
// Normalize the significand, adjust exponent if needed.
107+
if ((productHi & implicitBit) != 0) {
108+
productExponent +%= 1;
109+
} else {
110+
productHi = (productHi << 1) | (productLo >> (typeWidth - 1));
111+
productLo = productLo << 1;
112+
}
113+
114+
// If we have overflowed the type, return +/- infinity.
115+
if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign);
116+
117+
if (productExponent <= 0) {
118+
// Result is denormal before rounding
119+
//
120+
// If the result is so small that it just underflows to zero, return
121+
// a zero of the appropriate sign. Mathematically there is no need to
122+
// handle this case separately, but we make it a special case to
123+
// simplify the shift logic.
124+
const shift: u32 = @truncate(u32, Z(1) -% @bitCast(u32, productExponent));
125+
if (shift >= typeWidth) return @bitCast(T, productSign);
126+
127+
// Otherwise, shift the significand of the result so that the round
128+
// bit is the high bit of productLo.
129+
wideRightShiftWithSticky(Z, &productHi, &productLo, shift);
130+
} else {
131+
// Result is normal before rounding; insert the exponent.
132+
productHi &= significandMask;
133+
productHi |= Z(@bitCast(u32, productExponent)) << significandBits;
134+
}
135+
136+
// Insert the sign of the result:
137+
productHi |= productSign;
138+
139+
// Final rounding. The final result may overflow to infinity, or underflow
140+
// to zero, but those are the correct results in those cases. We use the
141+
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
142+
if (productLo > signBit) productHi +%= 1;
143+
if (productLo == signBit) productHi +%= productHi & 1;
144+
return @bitCast(T, productHi);
145+
}
146+
147+
fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
148+
switch (Z) {
149+
u32 => {
150+
// 32x32 --> 64 bit multiply
151+
const product = u64(a) * u64(b);
152+
hi.* = @truncate(u32, product >> 32);
153+
lo.* = @truncate(u32, product);
154+
},
155+
u64 => {
156+
const S = struct {
157+
fn loWord(x: u64) u64 {
158+
return @truncate(u32, x);
159+
}
160+
fn hiWord(x: u64) u64 {
161+
return @truncate(u32, x >> 32);
162+
}
163+
};
164+
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
165+
// many 64-bit platforms have this operation, but they tend to have hardware
166+
// floating-point, so we don't bother with a special case for them here.
167+
// Each of the component 32x32 -> 64 products
168+
const plolo: u64 = S.loWord(a) * S.loWord(b);
169+
const plohi: u64 = S.loWord(a) * S.hiWord(b);
170+
const philo: u64 = S.hiWord(a) * S.loWord(b);
171+
const phihi: u64 = S.hiWord(a) * S.hiWord(b);
172+
// Sum terms that contribute to lo in a way that allows us to get the carry
173+
const r0: u64 = S.loWord(plolo);
174+
const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo);
175+
lo.* = r0 +% (r1 << 32);
176+
// Sum terms contributing to hi with the carry from lo
177+
hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi;
178+
},
179+
u128 => {
180+
const Word_LoMask = u64(0x00000000ffffffff);
181+
const Word_HiMask = u64(0xffffffff00000000);
182+
const Word_FullMask = u64(0xffffffffffffffff);
183+
const S = struct {
184+
fn Word_1(x: u128) u64 {
185+
return @truncate(u32, x >> 96);
186+
}
187+
fn Word_2(x: u128) u64 {
188+
return @truncate(u32, x >> 64);
189+
}
190+
fn Word_3(x: u128) u64 {
191+
return @truncate(u32, x >> 32);
192+
}
193+
fn Word_4(x: u128) u64 {
194+
return @truncate(u32, x);
195+
}
196+
};
197+
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
198+
// many 64-bit platforms have this operation, but they tend to have hardware
199+
// floating-point, so we don't bother with a special case for them here.
200+
201+
const product11: u64 = S.Word_1(a) * S.Word_1(b);
202+
const product12: u64 = S.Word_1(a) * S.Word_2(b);
203+
const product13: u64 = S.Word_1(a) * S.Word_3(b);
204+
const product14: u64 = S.Word_1(a) * S.Word_4(b);
205+
const product21: u64 = S.Word_2(a) * S.Word_1(b);
206+
const product22: u64 = S.Word_2(a) * S.Word_2(b);
207+
const product23: u64 = S.Word_2(a) * S.Word_3(b);
208+
const product24: u64 = S.Word_2(a) * S.Word_4(b);
209+
const product31: u64 = S.Word_3(a) * S.Word_1(b);
210+
const product32: u64 = S.Word_3(a) * S.Word_2(b);
211+
const product33: u64 = S.Word_3(a) * S.Word_3(b);
212+
const product34: u64 = S.Word_3(a) * S.Word_4(b);
213+
const product41: u64 = S.Word_4(a) * S.Word_1(b);
214+
const product42: u64 = S.Word_4(a) * S.Word_2(b);
215+
const product43: u64 = S.Word_4(a) * S.Word_3(b);
216+
const product44: u64 = S.Word_4(a) * S.Word_4(b);
217+
218+
const sum0: u128 = u128(product44);
219+
const sum1: u128 = u128(product34) +%
220+
u128(product43);
221+
const sum2: u128 = u128(product24) +%
222+
u128(product33) +%
223+
u128(product42);
224+
const sum3: u128 = u128(product14) +%
225+
u128(product23) +%
226+
u128(product32) +%
227+
u128(product41);
228+
const sum4: u128 = u128(product13) +%
229+
u128(product22) +%
230+
u128(product31);
231+
const sum5: u128 = u128(product12) +%
232+
u128(product21);
233+
const sum6: u128 = u128(product11);
234+
235+
const r0: u128 = (sum0 & Word_FullMask) +%
236+
((sum1 & Word_LoMask) << 32);
237+
const r1: u128 = (sum0 >> 64) +%
238+
((sum1 >> 32) & Word_FullMask) +%
239+
(sum2 & Word_FullMask) +%
240+
((sum3 << 32) & Word_HiMask);
241+
242+
lo.* = r0 +% (r1 << 64);
243+
hi.* = (r1 >> 64) +%
244+
(sum1 >> 96) +%
245+
(sum2 >> 64) +%
246+
(sum3 >> 32) +%
247+
sum4 +%
248+
(sum5 << 32) +%
249+
(sum6 << 64);
250+
},
251+
else => @compileError("unsupported"),
252+
}
253+
}
254+
255+
fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 {
256+
const Z = @IntType(false, T.bit_count);
257+
const significandBits = std.math.floatMantissaBits(T);
258+
const implicitBit = Z(1) << significandBits;
259+
260+
const shift = @clz(significand.*) - @clz(implicitBit);
261+
significand.* <<= @intCast(std.math.Log2Int(Z), shift);
262+
return 1 - shift;
263+
}
264+
265+
fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void {
266+
const typeWidth = Z.bit_count;
267+
const S = std.math.Log2Int(Z);
268+
if (count < typeWidth) {
269+
const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count));
270+
lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count)) | sticky;
271+
hi.* = hi.* >> @intCast(S, count);
272+
} else if (count < 2 * typeWidth) {
273+
const sticky = @truncate(u8, hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*);
274+
lo.* = hi.* >> @intCast(S, count -% typeWidth) | sticky;
275+
hi.* = 0;
276+
} else {
277+
const sticky = @truncate(u8, hi.* | lo.*);
278+
lo.* = sticky;
279+
hi.* = 0;
280+
}
281+
}
282+
283+
test "import mulXf3" {
284+
_ = @import("mulXf3_test.zig");
285+
}

0 commit comments

Comments
 (0)