Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
189 changes: 189 additions & 0 deletions training/trillium/Llama3.1-70B-MaxText-with-Storage/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
# Instructions for training Llama3.1-70B-MaxText on TPU trillium (v6e-256) with Google Cloud Storage (GCS)

## GCS Bucket setup
1. Create two buckets: one to hold the dataset and one to use for checkpoints. To create regional HNS buckets use the following commands:
```
# Set variables
export DATASET_BUCKET="dataloading-bucket-name"
export CHECKPOINT_BUCKET="checkpoint-bucket-name"
export REGION="us-central1"

# Create dataset bucket
gcloud storage buckets create gs://${DATASET_BUCKET} --location=${REGION} --default-storage-class=Standard --enable-hierarchical-namespace --uniform-bucket-level-access

# Create checkpoint bucket
gcloud storage buckets create gs://${CHECKPOINT_BUCKET} --location=${REGION} --default-storage-class=Standard --enable-hierarchical-namespace --uniform-bucket-level-access
```
Replace the following values:
- `<DATASET_BUCKET>`:the name of your Cloud Storage bucket with training dataset. Do not include the gs:// prefix
- `<CHECKPOINT_BUCKET>`: the name of your Cloud Storage bucket where checkpoints will be written. Do not include the gs:// prefix
- `<REGION>`: the region where your GKE cluster is located ([available locations](https://cloud.google.com/storage/docs/locations#location-r))

2. Follow these [instructions](https://github.com/AI-Hypercomputer/maxtext/blob/b93beba652db6b3f4e6c82dc48a83b03229f5d3a/getting_started/Data_Input_Pipeline.md#tfds-pipeline) to download the Allenai c4 dataset to the dataset bucket.
Then follow these [instructions](https://github.com/google/array_record/tree/main/beam) to convert the dataset into ArrayRecord.

## XPK setup
1. Please follow this [link](https://github.com/AI-Hypercomputer/tpu-recipes/blob/main/training/trillium/XPK_README.md) to create your GKE cluster with XPK.
2. GCSFuse lets you mount and access Cloud Storage buckets as local file systems, so applications can read and write objects in your bucket using standard file system semantics. You'll need to use the below commands to create [XPK storage resources](https://github.com/AI-Hypercomputer/xpk?tab=readme-ov-file#storage) for both the dataset and checkpoint buckets in order to mount them to the MaxText workload using GCSFuse. For the dataset bucket and checkpoint bucket use separate manifest files `checkpoint_pvc.yaml` and `dataset_pvc.yaml` from this repo.
Be sure to update `volumeHandle` in the yamls with your correct bucket names. Creating a bucket and xpk storage is a one time setup.
```
export RECIPE_REPO="path-to-this-recipe-repo" # Update

cd ~/xpk
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also we never instruct the user to clone XPK.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In step 1 we link to the instructions for cloning xpk and installing the dependencies.


python3 xpk.py storage attach dataset-bucket --type=gcsfuse --project=$PROJECT --cluster=$CLUSTER --zone=$ZONE --mountpoint=/tmp/dataset --readonly=false --bucket=$DATASET_BUCKET --size=64 --automount=false --manifest=$RECIPE_REPO/tpu-recipes/training/trillium/Llama3.1-70B-MaxText-with-Storage/dataset_pvc.yaml

python3 xpk.py storage attach checkpoint-bucket --type=gcsfuse --project=$PROJECT --cluster=$CLUSTER --zone=$ZONE --mountpoint=/tmp/ckpt --readonly=false --bucket=$CHECKPOINT_BUCKET --size=64 --automount=false --manifest=$RECIPE_REPO/tpu-recipes/training/trillium/Llama3.1-70B-MaxText-with-Storage/checkpoint_pvc.yaml
```


## Prep for MaxText

### Install MaxText and Build Docker Image
Please follow this [link](https://github.com/AI-Hypercomputer/tpu-recipes/blob/main/training/trillium/MAXTEXT_README.md) to install maxtext and build the docker image.

In step 2, use the jax-stable-stack image containing JAX 0.5.2:
```
BASE_IMAGE=us-docker.pkg.dev/cloud-tpu-images/jax-stable-stack/tpu:jax0.5.2-rev1
bash docker_build_dependency_image.sh DEVICE=tpu MODE=stable_stack BASEIMAGE=${BASE_IMAGE}
```

## Run MaxText Llama3.1-70B workloads on GKE

### Starting workload

From the MaxText root directory, start your Llama3.1-70B workload.

Run MaxText Llama 3.1 70B with synthetic data and no checkpointing:
```
python3 benchmarks/benchmark_runner.py xpk \
--project=$PROJECT \
--zone=$ZONE \
--device_type=v6e-256 \
--num_slices=1 \
--cluster_name=$CLUSTER \
--base_output_directory=$OUTPUT_DIR \
--model_name="llama3_1_70b_8192_synthetic" \
--num_steps=100 \
--base_docker_image=maxtext_base_image
```

Run MaxText Llama 3.1 70B with checkpointing and loading real data from GCS:
```
python3 benchmarks/benchmark_runner.py xpk \
--project=$PROJECT \
--zone=$ZONE \
--device_type=v6e-256 \
--num_slices=1 \
--cluster_name=${CLUSTER} \
--base_output_directory=/tmp/ckpt \
--model_name="llama3_1_70b_8192_rd_ckpt_grain" \
--num_steps=100 \
--base_docker_image=maxtext_base_image \
--xpk_storage=dataset-bucket --xpk_storage=checkpoint-bucket
```

If you would like to run on multiple slices of v6e-256, you may modify the `--num_slices` flag.

### Workload Details

For reference, here are the `llama3_1_70b_8192_synthetic` and `llama3_1_70b_8192_rd_ckpt_grain` workload details:

```
MaxTextModel(
model_name="llama3_1-70b-8192",
model_type="llama3.1-70b",
tuning_params={
"per_device_batch_size": 4,
"ici_fsdp_parallelism": -1,
"remat_policy": "custom",
"decoder_layer_input": "offload",
"query_proj": "offload",
"key_proj": "offload",
"value_proj": "offload",
"max_target_length": 8192,
"attention": "flash",
"use_iota_embed": True,
"dataset_path": "gs://max-datasets-rogue",
"dataset_type": "synthetic",
"enable_checkpointing": False,
"sa_block_q": 2048,
"sa_block_kv": 2048,
"sa_block_kv_compute": 2048,
"sa_block_q_dkv": 2048,
"sa_block_kv_dkv": 2048,
"sa_block_kv_dkv_compute": 2048,
"sa_block_q_dq": 2048,
"sa_block_kv_dq": 2048,
"sa_use_fused_bwd_kernel": True,
"profiler": "xplane",
"skip_first_n_steps_for_profiler": 10,
"profiler_steps": 5,
},
xla_flags=(
xla_flags_library.DENSE_VMEM_LIMIT_FLAG
+ xla_flags_library.LAYOUT_FOR_ALL_REDUCE_SCATTER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
+ xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.HOST_OFFLOAD_FLAGS
),
)


MaxTextModel(
model_name="llama3_1_70b_8192_rd_ckpt_grain",
model_type="llama3.1-70b",
tuning_params={
"per_device_batch_size": 2,
"ici_fsdp_parallelism": -1,
"remat_policy": "custom",
"decoder_layer_input": "offload",
"query_proj": "offload",
"key_proj": "offload",
"value_proj": "offload",
"max_target_length": 8192,
"attention": "flash",
"use_iota_embed": True,
"dataset_path": "/tmp/dataset",
"dataset_type": "grain",
"grain_train_files": "/tmp/dataset/array-record/c4/en/3.0.1/c4-train.array_record*",
"grain_worker_count": 24,
"enable_checkpointing": True,
"async_checkpointing": True,
"checkpoint_period": 20,
"sa_block_q": 2048,
"sa_block_kv": 2048,
"sa_block_kv_compute": 2048,
"sa_block_q_dkv": 2048,
"sa_block_kv_dkv": 2048,
"sa_block_kv_dkv_compute": 2048,
"sa_block_q_dq": 2048,
"sa_block_kv_dq": 2048,
"sa_use_fused_bwd_kernel": True,
},
xla_flags=(
xla_flags_library.DENSE_VMEM_LIMIT_FLAG
+ xla_flags_library.LAYOUT_FOR_ALL_REDUCE_SCATTER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
+ xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.HOST_OFFLOAD_FLAGS
+ xla_flags_library.ENABLE_SPARSECORE_OFFLOADING_FOR_ALL_REDUCE
+ " --xla_tpu_iova_dma_chunk_size_bytes=104857"
),
)
```

This equivalent workload code can be found in the [maxtext_trillium_model_configs.py](https://github.com/AI-Hypercomputer/maxtext/blob/1e4d513ad70dd4074d975a9f7936295008d4b900/benchmarks/maxtext_trillium_model_configs.py#L1103-L1146) file within the MaxText repository.

## Clean-up
You can run the following commands to detach the XPK storage resources (this removes the PersistentVolumes and PersistentVolumeClaims created by the `xpk storage attach` commands from your GKE cluster).
```
# Detach dataset storage
python3 xpk.py storage detach dataset-bucket \
--project=$PROJECT --cluster=$CLUSTER --zone=$ZONE

# Detach checkpoint storage
python3 xpk.py storage detach checkpoint-bucket \
--project=$PROJECT --cluster=$CLUSTER --zone=$ZONE
```

Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
apiVersion: v1
kind: PersistentVolume
metadata:
name: checkpoint-bucket-pv
spec:
accessModes:
- ReadWriteMany
capacity:
storage: 64Gi
persistentVolumeReclaimPolicy: Retain
storageClassName: gcsfuse-sc # dummy storage class
claimRef:
namespace: default
name: checkpoint-bucket-pvc
mountOptions:
- metadata-cache:ttl-secs:-1
- metadata-cache:negative-ttl-secs:0
- metadata-cache:stat-cache-max-size-mb:-1
- metadata-cache:type-cache-max-size-mb:-1
- file-cache:enable-parallel-downloads:false
- file-system:kernel-list-cache-ttl-secs:0
- write:enable-streaming-writes:true
- file-system:precondition-errors:false
csi:
driver: gcsfuse.csi.storage.gke.io
volumeHandle: checkpoint-bucket-name # Update with your checkpoint bucket name
volumeAttributes:
gcsfuseMetadataPrefetchOnMount: "true"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: checkpoint-bucket-pvc
namespace: defaultls
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 64Gi
volumeName: checkpoint-bucket-pv
storageClassName: gcsfuse-sc # dummy storage class
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
apiVersion: v1
kind: PersistentVolume
metadata:
name: dataset-bucket-pv
spec:
accessModes:
- ReadWriteMany
capacity:
storage: 64Gi
persistentVolumeReclaimPolicy: Retain
storageClassName: gcsfuse-sc # dummy storage class
claimRef:
namespace: default
name: dataset-bucket-pvc
mountOptions:
- metadata-cache:ttl-secs:-1
- metadata-cache:stat-cache-max-size-mb:-1
- metadata-cache:type-cache-max-size-mb:-1
- file-cache:enable-parallel-downloads:false
- file-system:kernel-list-cache-ttl-secs:-1
- write:enable-streaming-writes:true
csi:
driver: gcsfuse.csi.storage.gke.io
volumeHandle: dataloading-bucket-name # Update with your bucket name
volumeAttributes:
gcsfuseMetadataPrefetchOnMount: "true"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: dataset-bucket-pvc
namespace: default
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 64Gi
volumeName: dataset-bucket-pv
storageClassName: gcsfuse-sc # dummy storage class
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
python3 benchmarks/benchmark_runner.py xpk \
project=$PROJECT \
zone=$ZONE \

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not sure why we need the .sh script here. This is not blocking, if you think its needed, go ahead with it.
LGTM.

device_type=v6e-256 \
num_slices=1 \
cluster_name=${CLUSTER} \
base_output_directory=/tmp/ckpt \
model_name="llama3_1_70b_8192_rd_ckpt_grain" \
num_steps=100 \
base_docker_image=maxtext_base_image \
xpk_storage=$DATASET_STORAGE_NAME xpk_storage=$CHECKPOINT_STORAGE_NAME
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
python3 benchmarks/benchmark_runner.py xpk \
project=$PROJECT \
zone=$ZONE \
device_type=v6e-256 \
num_slices=1 \
cluster_name=$CLUSTER \
base_output_directory=$OUTPUT_DIR \
model_name="llama3_1_70b_8192_synthetic" \
num_steps=100 \
base_docker_image=maxtext_base_image