Domain Generalizable Continual Learning
Download the dataset and then update utils/data.py
with the path to your data directory.
-
For implemented methods (listed in
models
folder), follow the bash scripts namedrun_*.sh
to run the experiments. -
For detailed configurations, please refer to the
configs
folder, baseline configs are located inconfigs/DGIL/[dataset_name]
, where[method_name].json
runs the regular class incremental learning pipeline, and[method_name]_dgil.json
runs the domain generalizable continual learning pipeline.
Here specifically, we provide the scripts to run the DoT experiments on DigitsDG and OfficeHome datasets with SLCA and L2P:
- DoT-SLCA:
# DoT-SLCA on DigitsDG
python main.py --config ./configs/DGIL/digitsdg/dot_slca_dgil.json
# DoT-SLCA on OfficeHome
python main.py --config ./configs/DGIL/officehome/dot_slca_dgil.json
- DoT-L2P:
# DoT-L2P on DigitsDG
python main.py --config ./configs/DGIL/digitsdg/dot_l2p_dgil.json
# DoT-L2P on OfficeHome
python main.py --config ./configs/DGIL/officehome/dot_l2p_dgil.json