Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 18 additions & 6 deletions lib/nn.js
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ class NeuralNetwork {
this.bias_h.randomize();
this.bias_o.randomize();
this.setLearningRate();

this.setActivationFunction();
this.setDActivationFunction();

}

predict(input_array) {
Expand All @@ -35,12 +39,12 @@ class NeuralNetwork {
let hidden = Matrix.multiply(this.weights_ih, inputs);
hidden.add(this.bias_h);
// activation function!
hidden.map(sigmoid);
hidden.map(this.activation_function);

// Generating the output's output!
let output = Matrix.multiply(this.weights_ho, hidden);
output.add(this.bias_o);
output.map(sigmoid);
output.map(this.activation_function);

// Sending back to the caller!
return output.toArray();
Expand All @@ -49,19 +53,27 @@ class NeuralNetwork {
setLearningRate(learning_rate = 0.1) {
this.learning_rate = learning_rate;
}

setActivationFunction(Fun = sigmoid) {
this.activation_function = Fun;
}

setDActivationFunction(dFun = dsigmoid) {
this.d_activation_function = dFun;
}

train(input_array, target_array) {
// Generating the Hidden Outputs
let inputs = Matrix.fromArray(input_array);
let hidden = Matrix.multiply(this.weights_ih, inputs);
hidden.add(this.bias_h);
// activation function!
hidden.map(sigmoid);
hidden.map(this.activation_function);

// Generating the output's output!
let outputs = Matrix.multiply(this.weights_ho, hidden);
outputs.add(this.bias_o);
outputs.map(sigmoid);
outputs.map(this.activation_function);

// Convert array to matrix object
let targets = Matrix.fromArray(target_array);
Expand All @@ -72,7 +84,7 @@ class NeuralNetwork {

// let gradient = outputs * (1 - outputs);
// Calculate gradient
let gradients = Matrix.map(outputs, dsigmoid);
let gradients = Matrix.map(outputs, this.d_activation_function);
gradients.multiply(output_errors);
gradients.multiply(this.learning_rate);

Expand All @@ -91,7 +103,7 @@ class NeuralNetwork {
let hidden_errors = Matrix.multiply(who_t, output_errors);

// Calculate hidden gradient
let hidden_gradient = Matrix.map(hidden, dsigmoid);
let hidden_gradient = Matrix.map(hidden, this.d_activation_function);
hidden_gradient.multiply(hidden_errors);
hidden_gradient.multiply(this.learning_rate);

Expand Down