Run SAM(Segment-Anything) in C# with TorchSharp.
With the help of this project you won't have to transform .pth model to onnx.
- Written in C# only.
- Support Vit-b, Vit-l and Vit-h and MobileSam now.
- Support Load PreTrained models from SAM.
- Support .Net6 or higher.
- Support CPU and CUDA.
- Support Float32 and Float16 data type.
- Support Automatic Mask Generator.
- Support Predict with points and boxes.
You can download pre-trained models here.
model | Download Link |
---|---|
vit-h | ViT-H SAM model |
vit-l | ViT-L SAM model |
vit-b | ViT-B SAM model |
vit-t | ViT-T Mobile Sam model |
You can download the code or add it from nuget.
dotnet add package IntptrMax.SamSharp
Note
Please add one of libtorch-cpu, libtorch-cuda-12.1, libtorch-cuda-12.1-win-x64 or libtorch-cuda-12.1-linux-x64 version 2.5.1.0 to execute.
In your code you can use it as below.
string checkpointPath = @"..\..\..\Assets\Weights\MobileSam.pt";
SamDevice device = SamDevice.CUDA; // or SamDevice.Cpu if you want to run on CPU
SamScalarType dtype = SamScalarType.Float32;
int imageSize = 512; // The maximum size of the image to process, can be adjusted based on your GPU memory
SKBitmap image = SKBitmap.Decode(@"..\..\..\Assets\Images\truck.jpg");
// Use predictor
SamSharp.Utils.SamPredictor predictor = new SamSharp.Utils.SamPredictor(checkpointPath, device, dtype);
List<SamPoint> points = new List<SamPoint>
{
new SamPoint(500, 375, false),
new SamPoint(1524,675, false),
};
List<SamBox> boxes = new List<SamBox>
{
new SamBox(75, 275, 1725, 850),
new SamBox(425, 600, 700, 875),
new SamBox(1375, 550, 1650, 800),
new SamBox(1240, 675, 1400, 750),
};
predictor.SetImage(image);
List<PredictOutput> outputs = predictor.Predict(null, boxes);
Console.WriteLine("The predictions are :");
using (SKCanvas canvas = new SKCanvas(image))
{
canvas.Clear(SKColors.Transparent);
var random = new Random();
for (int i = 0; i < outputs.Count; i++)
{
PredictOutput output = outputs[i];
Console.WriteLine($"Mask {i}: Precision: {output.Precision * 100:F2}%");
bool[,] mask = output.Mask;
SKColor color = new SKColor((byte)random.Next(256), (byte)random.Next(256), (byte)random.Next(256));
using (var paint = new SKPaint { Color = color, BlendMode = SKBlendMode.Src })
{
int width = mask.GetLength(0);
int height = mask.GetLength(1);
using (var path = new SKPath())
{
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
if (mask[x, y])
{
path.AddRect(new SKRect(x, y, x + 1, y + 1));
}
}
}
canvas.DrawPath(path, paint);
}
}
}
}
SKData data = image.Encode(SKEncodedImageFormat.Png, 100);
using (var stream = File.OpenWrite($"mask.png"))
{
data.SaveTo(stream);
}
And there is also a WinForm Demo.
string checkpointPath = @".\Assets\sam_vit_h_4b8939.pth";
SamDevice device = SamDevice.CUDA; // or SamDevice.Cpu if you want to run on CPU
SamScalarType dtype = SamScalarType.Float32;
int imageSize = 512; // The maximum size of the image to process, can be adjusted based on your GPU memory
SKBitmap image = SKBitmap.Decode(@"..\..\..\Assets\dog.jpg");
// Use Automatic Mask Generator
SamSharp.Utils.SamAutomaticMaskGenerator generator = new SamSharp.Utils.SamAutomaticMaskGenerator(checkpointPath, device: device, dtype: dtype);
List<PredictOutput> outputs = generator.generate(image, maxImageSize: imageSize);
Console.WriteLine("The predictions are :");
using (SKCanvas canvas = new SKCanvas(image))
{
canvas.Clear(SKColors.Transparent);
var random = new Random();
for (int i = 0; i < outputs.Count; i++)
{
PredictOutput output = outputs[i];
Console.WriteLine($"Mask {i}: Precision: {output.Precision * 100:F2}%");
bool[,] mask = output.Mask;
SKColor color = new SKColor((byte)random.Next(256), (byte)random.Next(256), (byte)random.Next(256));
using (var paint = new SKPaint { Color = color, BlendMode = SKBlendMode.Src })
{
int width = mask.GetLength(0);
int height = mask.GetLength(1);
using (var path = new SKPath())
{
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
if (mask[x, y])
{
path.AddRect(new SKRect(x, y, x + 1, y + 1));
}
}
}
canvas.DrawPath(path, paint);
}
}
}
}
SKData data = image.Encode(SKEncodedImageFormat.Png, 100);
using (var stream = File.OpenWrite($"mask.png"))
{
data.SaveTo(stream);
}
- Speed up.
- Use less VRAM.
- Use less RAM.