Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 20 additions & 5 deletions src/host/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,15 @@ using Statistics

function Statistics.varm(A::AbstractGPUArray{<:Real}, M::AbstractArray{<:Real};
dims, corrected::Bool=true)
T = float(eltype(A))
λ = convert(T, inv(_mean_denom(A, dims) - corrected))
#B = (A .- M).^2
# NOTE: the above broadcast promotes to Float64 and uses power_by_squaring...
B = broadcast(A, M) do a, m
B = Broadcast.broadcasted(A, M) do a, m
x = (a - m)
x*x
λ * x * x
end
sum(B, dims=dims)/(prod(size(A)[[dims...]])::Int-corrected)
sum(Broadcast.instantiate(B); dims)
end

Statistics.stdm(A::AbstractGPUArray{<:Real},m::AbstractArray{<:Real}, dim::Int; corrected::Bool=true) =
Expand All @@ -23,8 +25,17 @@ Statistics._std(A::AbstractGPUArray, corrected::Bool, mean, ::Colon) =
# Revert https://github.com/JuliaLang/Statistics.jl/pull/25
Statistics._mean(A::AbstractGPUArray, ::Colon) = sum(A) / length(A)
Statistics._mean(f, A::AbstractGPUArray, ::Colon) = sum(f, A) / length(A)
Statistics._mean(A::AbstractGPUArray, dims) = mean!(Base.reducedim_init(t -> t/2, +, A, dims), A)
Statistics._mean(f, A::AbstractGPUArray, dims) = sum(f, A, dims=dims) / mapreduce(i -> size(A, i), *, unique(dims); init=1)

function Statistics._mean(A::AbstractGPUArray, dims)
T = float(eltype(A))
λ = convert(T, inv(_mean_denom(A, dims)))
sum(Base.Fix1(*,λ), A; dims)
end
function Statistics._mean(f, A::AbstractGPUArray, dims)
T = float(eltype(A))
λ = convert(T, inv(_mean_denom(A, dims)))
sum(Base.Fix1(*,λ) ∘ f, A; dims)
end

function Statistics.covzm(x::AbstractGPUMatrix, vardim::Int=1; corrected::Bool=true)
C = Statistics.unscaled_covzm(x, vardim)
Expand All @@ -49,3 +60,7 @@ function Statistics.corzm(x::AbstractGPUMatrix, vardim::Int=1)
c = Statistics.unscaled_covzm(x, vardim)
return Statistics.cov2cor!(c, sqrt.(diag(c)))
end

_mean_denom(x::AbstractArray, dims::Integer) = size(x, dims)
_mean_denom(x::AbstractArray, dims::Colon) = length(x)
_mean_denom(x::AbstractArray, dims) = prod(size(x,d) for d in unique(dims); init=1)