-
Notifications
You must be signed in to change notification settings - Fork 22
Clean up verbose or old-style definitions #156
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -47,14 +47,33 @@ if !hasmethod(one, (Type{TransparentGray},)) | |
Base.one(p::Colorant) = one(typeof(p)) | ||
end | ||
|
||
# Real values are treated like grays | ||
if !hasmethod(gray, (Number,)) | ||
ColorTypes.gray(x::Real) = x | ||
if !hasmethod(isfinite, (Colorant,)) | ||
isfinite(c::Colorant) = mapreducec(isfinite, &, true, c) | ||
isinf(c::Colorant) = mapreducec(isinf, |, false, c) | ||
isnan(c::Colorant) = mapreducec(isnan, |, false, c) | ||
end | ||
|
||
if !isdefined(ColorTypes, :nan) | ||
nan(::Type{T}) where {T<:AbstractFloat} = convert(T, NaN) | ||
nan(::Type{C}) where {T<:AbstractFloat, C<:MathTypes{T}} = mapc(_ -> nan(T), zero(C)) | ||
end | ||
|
||
if which(real, (Type{<:AbstractGray},)).module === Base | ||
real(::Type{C}) where {C<:AbstractGray} = real(eltype(C)) | ||
end | ||
|
||
# To help type inference | ||
promote_rule(::Type{T}, ::Type{C}) where {T<:Real,C<:AbstractGray} = promote_type(T, eltype(C)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think it would be good to move this rule to ColorTypes.jl since it does exist. |
||
|
||
promote_leaf_eltypes(x::Union{AbstractArray{T},Tuple{T,Vararg{T}}}) where {T<:MathTypes} = eltype(T) | ||
|
||
if isdefined(Statistics, :_mean_promote) | ||
Statistics._mean_promote(x::MathTypes, y::MathTypes) = mapc(FixedPointNumbers.Treduce, y) | ||
end | ||
|
||
## Traits and key utilities | ||
|
||
# Return types for arithmetic operations | ||
# Return eltypes for arithmetic operations | ||
multype(::Type{A}, ::Type{B}) where {A,B} = coltype(typeof(zero(A)*zero(B))) | ||
sumtype(::Type{A}, ::Type{B}) where {A,B} = coltype(typeof(zero(A)+zero(B))) | ||
divtype(::Type{A}, ::Type{B}) where {A,B} = coltype(typeof(zero(A)/oneunit(B))) | ||
|
@@ -99,20 +118,22 @@ _arith_colorant_type(::Type{<:AbstractRGBA}) = RGBA | |
parametric(::Type{C}, ::Type{T}) where {C,T} = C{T} | ||
parametric(::Type{C}, ::Type{T}) where {T, C<:Colorant{T}} = C # e.g. parametric(RGB24, N0f8) == RGB24 | ||
|
||
rettype(::typeof(+), a::C, b::C) where {C <: Colorant} = C | ||
rettype(::typeof(-), a::C, b::C) where {C <: Colorant} = C | ||
rettype(::typeof(+), a, b) = parametric(color_rettype(a, b), sumtype(a, b)) | ||
rettype(::typeof(-), a, b) = parametric(color_rettype(a, b), sumtype(a, b)) | ||
rettype(::typeof(*), a, b) = parametric(color_rettype(a, b), multype(eltype(a), eltype(b))) # gray * gray | ||
rettype(::typeof(*), a::Real, b) = arith_colorant_type(b){multype(typeof(a), eltype(b))} | ||
rettype(::typeof(/), a, b::Real) = arith_colorant_type(a){divtype(eltype(a), typeof(b))} | ||
rettype(::typeof(^), a, b) = arith_colorant_type(a){powtype(eltype(a), typeof(b))} | ||
rettype(::typeof(^), a, b::Integer) = arith_colorant_type(a){powtype(eltype(a), Int)} | ||
|
||
# Useful for leveraging iterator algorithms. Don't use this externally, as the implementation may change. | ||
channels(c::AbstractGray) = (gray(c),) | ||
channels(c::TransparentGray) = (gray(c), alpha(c)) | ||
channels(c::AbstractRGB) = (red(c), green(c), blue(c)) | ||
channels(c::TransparentRGB) = (red(c), green(c), blue(c), alpha(c)) | ||
|
||
nan(::Type{T}) where {T<:AbstractFloat} = convert(T, NaN) | ||
nan(::Type{C}) where {C<:MathTypes} = _nan(eltype(C), C) | ||
_nan(::Type{T}, ::Type{C}) where {T<:AbstractFloat,C<:AbstractGray} = (x = convert(T, NaN); C(x)) | ||
_nan(::Type{T}, ::Type{C}) where {T<:AbstractFloat,C<:TransparentGray} = (x = convert(T, NaN); C(x,x)) | ||
_nan(::Type{T}, ::Type{C}) where {T<:AbstractFloat,C<:AbstractRGB} = (x = convert(T, NaN); C(x,x,x)) | ||
_nan(::Type{T}, ::Type{C}) where {T<:AbstractFloat,C<:TransparentRGB} = (x = convert(T, NaN); C(x,x,x,x)) | ||
|
||
|
||
## Generic algorithms | ||
Base.add_sum(c1::MathTypes,c2::MathTypes) = mapc(Base.add_sum, c1, c2) | ||
Base.reduce_first(::typeof(Base.add_sum), c::MathTypes) = mapc(x->Base.reduce_first(Base.add_sum, x), c) | ||
|
@@ -139,47 +160,60 @@ end | |
dotc(x::T, y::T) where {T<:Real} = acc(x)*acc(y) | ||
dotc(x::Real, y::Real) = dotc(promote(x, y)...) | ||
|
||
""" | ||
y = complement(x) | ||
|
||
Take the complement `1-x` of `x`. If `x` is a color with an alpha channel, | ||
the alpha channel is left untouched. Don't forget to add a dot when `x` is | ||
an array: `complement.(x)` | ||
""" | ||
complement(x::Union{Number,Colorant}) = oneunit(x)-x | ||
complement(x::TransparentColor) = typeof(x)(complement(color(x)), alpha(x)) | ||
|
||
|
||
## Math on Colors. These implementations encourage inlining and, | ||
## for the case of Normed types, nearly halve the number of multiplications (for RGB) | ||
|
||
# Common | ||
copy(c::MathTypes) = c | ||
(*)(c::MathTypes, f::Real) = (*)(f, c) | ||
(+)(c::MathTypes) = mapc(+, c) | ||
(+)(c::MathTypes{Bool}) = c | ||
(-)(c::MathTypes) = mapc(-, c) | ||
(-)(c::MathTypes{Bool}) = c | ||
(/)(c::MathTypes, f::Real) = (one(f)/f)*c | ||
(/)(c::MathTypes, f::Integer) = (one(eltype(c))/f)*c | ||
abs(c::MathTypes) = mapc(abs, c) | ||
norm(c::MathTypes, p::Real=2) = (cc = channels(c); norm(cc, p)/(p == 0 ? length(cc) : length(cc)^(1/p))) | ||
|
||
## Mixed types | ||
(+)(a::MathTypes, b::MathTypes) = (+)(promote(a, b)...) | ||
(-)(a::MathTypes, b::MathTypes) = (-)(promote(a, b)...) | ||
|
||
|
||
# Scalar RGB | ||
copy(c::AbstractRGB) = c | ||
(+)(c::AbstractRGB) = mapc(+, c) | ||
(+)(c::TransparentRGB) = mapc(+, c) | ||
(-)(c::AbstractRGB) = mapc(-, c) | ||
(-)(c::TransparentRGB) = mapc(-, c) | ||
(*)(f::Real, c::AbstractRGB) = arith_colorant_type(c){multype(typeof(f),eltype(c))}(f*red(c), f*green(c), f*blue(c)) | ||
(*)(f::Real, c::TransparentRGB) = arith_colorant_type(c){multype(typeof(f),eltype(c))}(f*red(c), f*green(c), f*blue(c), f*alpha(c)) | ||
(*)(f::Real, c::AbstractRGB) = rettype(*, f, c)(f*red(c), f*green(c), f*blue(c)) | ||
(*)(f::Real, c::TransparentRGB) = rettype(*, f, c)(f*red(c), f*green(c), f*blue(c), f*alpha(c)) | ||
function (*)(f::Real, c::AbstractRGB{T}) where T<:Normed | ||
fs = f*(1/reinterpret(oneunit(T))) | ||
arith_colorant_type(c){multype(typeof(f),T)}(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
rettype(*, f, c)(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
end | ||
function (*)(f::Normed, c::AbstractRGB{T}) where T<:Normed | ||
fs = reinterpret(f)*(1/widen(reinterpret(oneunit(T)))^2) | ||
arith_colorant_type(c){multype(typeof(f),T)}(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
rettype(*, f, c)(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
end | ||
function (/)(c::AbstractRGB{T}, f::Real) where T<:Normed | ||
fs = (one(f)/reinterpret(oneunit(T)))/f | ||
arith_colorant_type(c){divtype(typeof(f),T)}(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
rettype(/, c, f)(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
end | ||
function (/)(c::AbstractRGB{T}, f::Integer) where T<:Normed | ||
fs = (1/reinterpret(oneunit(T)))/f | ||
arith_colorant_type(c){divtype(typeof(f),T)}(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
rettype(/, c, f)(fs*reinterpret(red(c)), fs*reinterpret(green(c)), fs*reinterpret(blue(c))) | ||
end | ||
(+)(a::AbstractRGB{S}, b::AbstractRGB{T}) where {S,T} = parametric(color_rettype(a, b), sumtype(S,T))(red(a)+red(b), green(a)+green(b), blue(a)+blue(b)) | ||
(-)(a::AbstractRGB{S}, b::AbstractRGB{T}) where {S,T} = parametric(color_rettype(a, b), sumtype(S,T))(red(a)-red(b), green(a)-green(b), blue(a)-blue(b)) | ||
(+)(a::TransparentRGB, b::TransparentRGB) = | ||
parametric(color_rettype(a, b), sumtype(a,b))(red(a)+red(b), green(a)+green(b), blue(a)+blue(b), alpha(a)+alpha(b)) | ||
(-)(a::TransparentRGB, b::TransparentRGB) = | ||
parametric(color_rettype(a, b), sumtype(a,b))(red(a)-red(b), green(a)-green(b), blue(a)-blue(b), alpha(a)-alpha(b)) | ||
(*)(c::AbstractRGB, f::Real) = (*)(f, c) | ||
(*)(c::TransparentRGB, f::Real) = (*)(f, c) | ||
(/)(c::AbstractRGB, f::Real) = (one(f)/f)*c | ||
(/)(c::TransparentRGB, f::Real) = (one(f)/f)*c | ||
(/)(c::AbstractRGB, f::Integer) = (one(eltype(c))/f)*c | ||
(/)(c::TransparentRGB, f::Integer) = (one(eltype(c))/f)*c | ||
|
||
(+)(a::AbstractRGB, b::AbstractRGB) = rettype(+, a, b)(red(a)+red(b), green(a)+green(b), blue(a)+blue(b)) | ||
(-)(a::AbstractRGB, b::AbstractRGB) = rettype(-, a, b)(red(a)-red(b), green(a)-green(b), blue(a)-blue(b)) | ||
(+)(a::TransparentRGB, b::TransparentRGB) = rettype(+, a, b)(red(a)+red(b), green(a)+green(b), blue(a)+blue(b), alpha(a)+alpha(b)) | ||
(-)(a::TransparentRGB, b::TransparentRGB) = rettype(-, a, b)(red(a)-red(b), green(a)-green(b), blue(a)-blue(b), alpha(a)-alpha(b)) | ||
|
||
# New multiplication operators | ||
(⋅)(x::AbstractRGB, y::AbstractRGB) = (T = acctype(eltype(x), eltype(y)); T(red(x))*T(red(y)) + T(green(x))*T(green(y)) + T(blue(x))*T(blue(y)))/3 | ||
|
@@ -188,24 +222,13 @@ end | |
(⊙)(x::Union{AbstractRGB,AbstractGray}, y::Union{AbstractRGB,AbstractGray}) = ⊙(promote(x, y)...) | ||
# ⊗ defined below | ||
|
||
isfinite(c::Colorant{T}) where {T<:Normed} = true | ||
isfinite(c::Colorant) = mapreducec(isfinite, &, true, c) | ||
isnan(c::Colorant{T}) where {T<:Normed} = false | ||
isnan(c::Colorant) = mapreducec(isnan, |, false, c) | ||
isinf(c::Colorant{T}) where {T<:Normed} = false | ||
isinf(c::Colorant) = mapreducec(isinf, |, false, c) | ||
abs(c::MathTypes) = mapc(abs, c) | ||
norm(c::MathTypes, p::Real=2) = (cc = channels(c); norm(cc, p)/(p == 0 ? length(cc) : length(cc)^(1/p))) | ||
|
||
promote_leaf_eltypes(x::Union{AbstractArray{T},Tuple{T,Vararg{T}}}) where {T<:MathTypes} = eltype(T) | ||
|
||
# These constants come from squaring the conversion to grayscale | ||
# (rec601 luma), and normalizing | ||
dotc(x::T, y::T) where {T<:AbstractRGB} = 0.200f0 * acc(red(x))*acc(red(y)) + 0.771f0 * acc(green(x))*acc(green(y)) + 0.029f0 * acc(blue(x))*acc(blue(y)) | ||
dotc(x::AbstractRGB, y::AbstractRGB) = dotc(promote(x, y)...) | ||
|
||
# Scalar Gray | ||
copy(c::AbstractGray) = c | ||
const unaryOps = (:~, :conj, :abs, | ||
:sin, :cos, :tan, :sinh, :cosh, :tanh, | ||
:asin, :acos, :atan, :asinh, :acosh, :atanh, | ||
|
@@ -232,43 +255,19 @@ function logabsgamma(c::AbstractGray) | |
return Gray(lagc), s | ||
end | ||
|
||
""" | ||
y = complement(x) | ||
|
||
Take the complement `1-x` of `x`. If `x` is a color with an alpha channel, | ||
the alpha channel is left untouched. Don't forget to add a dot when `x` is | ||
an array: `complement.(x)` | ||
""" | ||
complement(x::Union{Number,Colorant}) = oneunit(x)-x | ||
complement(x::TransparentColor) = typeof(x)(complement(color(x)), alpha(x)) | ||
|
||
middle(c::AbstractGray) = arith_colorant_type(c)(middle(gray(c))) | ||
middle(x::C, y::C) where {C<:AbstractGray} = arith_colorant_type(C)(middle(gray(x), gray(y))) | ||
|
||
if isdefined(Statistics, :_mean_promote) | ||
Statistics._mean_promote(x::MathTypes, y::MathTypes) = mapc(FixedPointNumbers.Treduce, y) | ||
end | ||
|
||
(*)(f::Real, c::AbstractGray) = arith_colorant_type(c){multype(typeof(f),eltype(c))}(f*gray(c)) | ||
(*)(f::Real, c::TransparentGray) = arith_colorant_type(c){multype(typeof(f),eltype(c))}(f*gray(c), f*alpha(c)) | ||
(*)(c::AbstractGray, f::Real) = (*)(f, c) | ||
(*)(c::TransparentGray, f::Real) = (*)(f, c) | ||
(/)(c::AbstractGray, f::Real) = (one(f)/f)*c | ||
(*)(f::Real, c::AbstractGray) = rettype(*, f, c)(f*gray(c)) | ||
(*)(f::Real, c::TransparentGray) = rettype(*, f, c)(f*gray(c), f*alpha(c)) | ||
(/)(n::Number, c::AbstractGray) = base_color_type(c)(n/gray(c)) | ||
(/)(c::TransparentGray, f::Real) = (one(f)/f)*c | ||
(/)(c::AbstractGray, f::Integer) = (one(eltype(c))/f)*c | ||
(/)(c::TransparentGray, f::Integer) = (one(eltype(c))/f)*c | ||
(+)(a::AbstractGray{S}, b::AbstractGray{T}) where {S,T} = parametric(color_rettype(a,b), sumtype(S,T))(gray(a)+gray(b)) | ||
(+)(a::TransparentGray, b::TransparentGray) = parametric(color_rettype(a,b), sumtype(eltype(a),eltype(b)))(gray(a)+gray(b),alpha(a)+alpha(b)) | ||
(-)(a::AbstractGray{S}, b::AbstractGray{T}) where {S,T} = parametric(color_rettype(a,b), sumtype(S,T))(gray(a)-gray(b)) | ||
(-)(a::TransparentGray, b::TransparentGray) = parametric(color_rettype(a,b), sumtype(eltype(a),eltype(b)))(gray(a)-gray(b),alpha(a)-alpha(b)) | ||
(*)(a::AbstractGray{S}, b::AbstractGray{T}) where {S,T} = parametric(color_rettype(a,b), multype(S,T))(gray(a)*gray(b)) | ||
(^)(a::AbstractGray{S}, b::Integer) where {S} = arith_colorant_type(a){powtype(S,Int)}(gray(a)^convert(Int,b)) | ||
(^)(a::AbstractGray{S}, b::Real) where {S} = arith_colorant_type(a){powtype(S,typeof(b))}(gray(a)^b) | ||
(+)(c::AbstractGray) = c | ||
(+)(c::TransparentGray) = c | ||
(-)(c::AbstractGray) = typeof(c)(-gray(c)) | ||
(-)(c::TransparentGray) = typeof(c)(-gray(c),-alpha(c)) | ||
(+)(a::AbstractGray, b::AbstractGray) = rettype(+, a, b)(gray(a)+gray(b)) | ||
(+)(a::TransparentGray, b::TransparentGray) = rettype(+, a, b)(gray(a)+gray(b), alpha(a)+alpha(b)) | ||
(-)(a::AbstractGray, b::AbstractGray) = rettype(-, a, b)(gray(a)-gray(b)) | ||
(-)(a::TransparentGray, b::TransparentGray) = rettype(-, a, b)(gray(a)-gray(b), alpha(a)-alpha(b)) | ||
(*)(a::AbstractGray, b::AbstractGray) = rettype(*, a, b)(gray(a)*gray(b)) | ||
(^)(a::AbstractGray, b::Integer) = rettype(^, a, b)(gray(a)^convert(Int,b)) | ||
(^)(a::AbstractGray, b::Real) = rettype(^, a, b)(gray(a)^b) | ||
(/)(a::C, b::C) where C<:AbstractGray = base_color_type(C)(gray(a)/gray(b)) | ||
(/)(a::AbstractGray, b::AbstractGray) = /(promote(a, b)...) | ||
(+)(a::AbstractGray, b::Number) = base_color_type(a)(gray(a)+b) | ||
|
@@ -306,20 +305,10 @@ end | |
dotc(x::T, y::T) where {T<:AbstractGray} = acc(gray(x))*acc(gray(y)) | ||
dotc(x::AbstractGray, y::AbstractGray) = dotc(promote(x, y)...) | ||
|
||
# Mixed types | ||
(+)(a::MathTypes, b::MathTypes) = (+)(promote(a, b)...) | ||
(-)(a::MathTypes, b::MathTypes) = (-)(promote(a, b)...) | ||
|
||
real(::Type{C}) where {C<:AbstractGray} = real(eltype(C)) | ||
|
||
# To help type inference | ||
promote_rule(::Type{T}, ::Type{C}) where {T<:Real,C<:AbstractGray} = promote_type(T, eltype(C)) | ||
|
||
typemin(::Type{T}) where {T<:ColorTypes.AbstractGray} = T(typemin(eltype(T))) | ||
typemax(::Type{T}) where {T<:ColorTypes.AbstractGray} = T(typemax(eltype(T))) | ||
|
||
typemin(::T) where {T<:ColorTypes.AbstractGray} = T(typemin(eltype(T))) | ||
typemax(::T) where {T<:ColorTypes.AbstractGray} = T(typemax(eltype(T))) | ||
typemin(::Type{C}) where {C<:AbstractGray} = C(typemin(eltype(C))) | ||
typemax(::Type{C}) where {C<:AbstractGray} = C(typemax(eltype(C))) | ||
typemin(c::AbstractGray) = typemin(typeof(c)) | ||
typemax(c::AbstractGray) = typemax(typeof(c)) | ||
|
||
## RGB tensor products | ||
|
||
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The specialization about
Normed
seems to be unnecessary thanks to constant propagation.(BTW,
FixedPoint
would be more appropriate thanNormed
.)