-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Closed
Labels
performanceMust go fasterMust go faster
Description
I'm experiencing a large performance regression (2-3x) using Plots.plot function when comparing Julia 1.6 beta1 with 1.5.3. Similar results when using plotly backend.
Julia 1.5.3:
julia> @benchmark Plots.plot(1:100)
BenchmarkTools.Trial:
memory estimate: 169.02 KiB
allocs estimate: 2860
--------------
minimum time: 359.307 μs (0.00% GC)
median time: 370.611 μs (0.00% GC)
mean time: 396.897 μs (3.38% GC)
maximum time: 4.577 ms (88.68% GC)
--------------
samples: 10000
evals/sample: 1
Julia 1.6b1:
julia> @benchmark Plots.plot(1:100)
BenchmarkTools.Trial:
memory estimate: 200.80 KiB
allocs estimate: 2659
--------------
minimum time: 1.115 ms (0.00% GC)
median time: 1.140 ms (0.00% GC)
mean time: 1.194 ms (1.02% GC)
maximum time: 4.507 ms (73.41% GC)
--------------
samples: 4183
evals/sample: 1
Metadata
Metadata
Assignees
Labels
performanceMust go fasterMust go faster