Closed
Description
Copy pasting the following into the REPL:
using Elliptic, Test
@testset "Table 17.9: Π(n; φ, m)" begin
# Abramowitz & Stegun, Table 17.9, p625-6
# Π(n;phi\alpha)
# n α\φ 0 15 30 45 60 75 90
table17p9 = [
0.0 0 0 0.26180 0.52360 0.78540 1.04720 1.30900 1.57080;
0.0 15 0 0.26200 0.52513 0.79025 1.05774 1.32733 1.59814;
0.0 30 0 0.26254 0.52943 0.80437 1.08955 1.38457 1.68575;
0.0 45 0 0.26330 0.53562 0.82602 1.14243 1.48788 1.85407;
0.0 60 0 0.26406 0.54223 0.85122 1.21260 1.64918 2.15651;
0.0 75 0 0.26463 0.54736 0.87270 1.28371 1.87145 2.76806;
0.0 90 0 0.26484 0.54931 0.88137 1.31696 2.02759 Inf;
0.1 0 0 0.26239 0.52820 0.80013 1.07949 1.36560 1.65576;
0.1 15 0 0.26259 0.52975 0.80514 1.09058 1.38520 1.68536;
0.1 30 0 0.26314 0.53412 0.81972 1.12405 1.44649 1.78030;
0.1 45 0 0.26390 0.54041 0.84210 1.17980 1.55739 1.96326;
0.1 60 0 0.26467 0.54712 0.86817 1.25393 1.73121 2.29355;
0.1 75 0 0.26524 0.55234 0.89040 1.32926 1.97204 2.96601;
0.1 90 0 0.26545 0.55431 0.89939 1.36454 2.14201 Inf;
0.2 0 0 0.26299 0.53294 0.81586 1.11534 1.43078 1.75620;
0.2 15 0 0.26319 0.53452 0.82104 1.12705 1.45187 1.78850;
0.2 30 0 0.26374 0.53896 0.83612 1.16241 1.51792 1.89229;
0.2 45 0 0.26450 0.54535 0.85928 1.22139 1.63775 2.09296;
0.2 60 0 0.26527 0.55217 0.88629 1.30003 1.82643 2.45715;
0.2 75 0 0.26585 0.55747 0.90934 1.38016 2.08942 3.20448;
0.2 90 0 0.26606 0.55948 0.91867 1.41777 2.27604 Inf;
0.3 0 0 0.26359 0.53784 0.83271 1.15551 1.50701 1.87746;
0.3 15 0 0.26379 0.53945 0.83808 1.16791 1.52988 1.91309;
0.3 30 0 0.26434 0.54396 0.85370 1.20543 1.60161 2.02779;
0.3 45 0 0.26511 0.55046 0.87771 1.26812 1.73217 2.25038;
0.3 60 0 0.26588 0.55739 0.90574 1.35193 1.93879 2.65684;
0.3 75 0 0.26646 0.56278 0.92969 1.43759 2.22876 3.49853;
0.3 90 0 0.26667 0.56483 0.93938 1.47789 2.43581 Inf;
0.4 0 0 0.26420 0.54291 0.85084 1.20098 1.59794 2.02789;
0.4 15 0 0.26440 0.54454 0.85641 1.21419 1.62298 2.06774;
0.4 30 0 0.26495 0.54912 0.87262 1.25419 1.70165 2.19629;
0.4 45 0 0.26572 0.55573 0.89756 1.32117 1.84537 2.44683;
0.4 60 0 0.26650 0.56278 0.92670 1.41098 2.07413 2.90761;
0.4 75 0 0.26708 0.56827 0.95162 1.50309 2.39775 3.87214;
0.4 90 0 0.26729 0.57035 0.96171 1.54653 2.63052 Inf;
0.5 0 0 0.26481 0.54814 0.87042 1.25310 1.70919 2.22144;
0.5 15 0 0.26501 0.54980 0.87621 1.26726 1.73695 2.26685;
0.5 30 0 0.26557 0.55447 0.89307 1.31017 1.82433 2.41367;
0.5 45 0 0.26634 0.56119 0.91902 1.38218 1.98464 2.70129;
0.5 60 0 0.26712 0.56837 0.94939 1.47906 2.24155 3.23477;
0.5 75 0 0.26770 0.57394 0.97538 1.57881 2.60846 4.36620;
0.5 90 0 0.26792 0.57606 0.98591 1.62599 2.87468 Inf;
0.6 0 0 0.26543 0.55357 0.89167 1.31379 1.85002 2.48365;
0.6 15 0 0.26563 0.55525 0.89770 1.32907 1.88131 2.53677;
0.6 30 0 0.26619 0.56000 0.91527 1.37544 1.98005 2.70905;
0.6 45 0 0.26696 0.56684 0.94235 1.45347 2.16210 3.04862;
0.6 60 0 0.26775 0.57414 0.97406 1.55884 2.45623 3.68509;
0.6 75 0 0.26833 0.57982 1.00123 1.66780 2.88113 5.05734;
0.6 90 0 0.26855 0.58198 1.01225 1.71951 3.19278 Inf;
0.7 0 0 0.26605 0.55918 0.91487 1.38587 2.03720 2.86787;
0.7 15 0 0.26625 0.56090 0.92116 1.40251 2.07333 2.93263;
0.7 30 0 0.26681 0.56573 0.93952 1.45309 2.18765 3.14339;
0.7 45 0 0.26759 0.57270 0.96784 1.53846 2.39973 3.56210;
0.7 60 0 0.26838 0.58014 1.00104 1.65425 2.74586 4.35751;
0.7 75 0 0.26897 0.58592 1.02954 1.77459 3.25315 6.11030;
0.7 90 0 0.26918 0.58812 1.04110 1.83192 3.63042 Inf;
0.8 0 0 0.26668 0.56501 0.94034 1.47370 2.30538 3.51240;
0.8 15 0 0.26688 0.56676 0.94694 1.49205 2.34868 3.59733;
0.8 30 0 0.26745 0.57168 0.96618 1.54790 2.48618 3.87507;
0.8 45 0 0.26823 0.57877 0.99588 1.64250 2.74328 4.43274;
0.8 60 0 0.26902 0.58635 1.03076 1.77145 3.16844 5.51206;
0.8 75 0 0.26961 0.59225 1.06073 1.90629 3.80370 7.96669;
0.8 90 0 0.26982 0.59449 1.07290 1.97080 4.28518 Inf;
0.9 0 0 0.26731 0.57106 0.96853 1.58459 2.74439 4.96729;
0.9 15 0 0.26752 0.57284 0.97547 1.60515 2.79990 5.09958;
0.9 30 0 0.26808 0.57785 0.99569 1.66788 2.97710 5.53551;
0.9 45 0 0.26887 0.58508 1.02695 1.77453 3.31210 6.42557;
0.9 60 0 0.26966 0.59281 1.06372 1.92081 3.87661 8.20086;
0.9 75 0 0.27025 0.59882 1.09535 2.07487 4.74432 12.46407;
0.9 90 0 0.27047 0.60110 1.10821 2.14899 5.42125 Inf;
1.0 0 0 0.26795 0.57735 1.00000 1.73205 3.73205 Inf;
1.0 15 0 0.26816 0.57916 1.00731 1.75565 3.81655 Inf;
1.0 30 0 0.26872 0.58428 1.02866 1.82781 4.08864 Inf;
1.0 45 0 0.26951 0.59165 1.06170 1.95114 4.61280 Inf;
1.0 60 0 0.27031 0.59953 1.10060 2.12160 5.52554 Inf;
1.0 75 0 0.27090 0.60566 1.13414 2.30276 7.00372 Inf;
1.0 90 0 0.27112 0.60799 1.14779 2.39053 8.22356 Inf;
]
for i = 1:size(table17p9,1)
n = table17p9[i,1]
alpha = table17p9[i,2]
m = sind(alpha)^2
for j = 3:size(table17p9,2)
phi = 15.0*(j-3)
x = table17p9[i,j]
y = Pi(n, deg2rad(phi), m)
if x == Inf
@test x == y
else
@test x ≈ y atol=1e-5*max(x,1.)
end
end
end
end
kills julia with
Internal error: during type inference of
Tuple{}
Encountered stack overflow.
This might be caused by recursion over very long tuples or argument lists.
[65717] signal 6: Abort trap: 6
in expression starting at REPL[2]:1
__pthread_kill at /usr/lib/system/libsystem_kernel.dylib (unknown line)
pthread_kill at /usr/lib/system/libsystem_pthread.dylib (unknown line)
abort at /usr/lib/system/libsystem_c.dylib (unknown line)
jl_type_infer at /Users/kristoffercarlsson/julia1.11/src/gf.c:409
jl_toplevel_eval_flex at /Users/kristoffercarlsson/julia1.11/src/toplevel.c:932
jl_toplevel_eval_flex at /Users/kristoffercarlsson/julia1.11/src/toplevel.c:886
ijl_toplevel_eval at /Users/kristoffercarlsson/julia1.11/src/toplevel.c:952 [inlined]
ijl_toplevel_eval_in at /Users/kristoffercarlsson/julia1.11/src/toplevel.c:994
eval at ./boot.jl:428 [inlined]
eval_user_input at /Users/kristoffercarlsson/julia1.11/usr/share/julia/stdlib/v1.11/REPL/src/REPL.jl:224
repl_backend_loop at /Users/kristoffercarlsson/julia1.11/usr/share/julia/stdlib/v1.11/REPL/src/REPL.jl:320
#start_repl_backend#59 at /Users/kristoffercarlsson/julia1.11/usr/share/julia/stdlib/v1.11/REPL/src/REPL.jl:305
Seen on PkgEval https://s3.amazonaws.com/julialang-reports/nanosoldier/pkgeval/by_hash/0520b80_vs_997b49f/Elliptic.primary.log.
I don't think this code is very weird and the package is quite old so I would say this is a regression