Skip to content

Improve performance of svd and eigen of Diagonals #43856

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Feb 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 27 additions & 9 deletions stdlib/LinearAlgebra/src/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -666,20 +666,38 @@ function eigen(D::Diagonal; permute::Bool=true, scale::Bool=true, sortby::Union{
if any(!isfinite, D.diag)
throw(ArgumentError("matrix contains Infs or NaNs"))
end
Eigen(sorteig!(eigvals(D), eigvecs(D), sortby)...)
Td = Base.promote_op(/, eltype(D), eltype(D))
λ = eigvals(D)
if !isnothing(sortby)
p = sortperm(λ; alg=QuickSort, by=sortby)
λ = λ[p] # make a copy, otherwise this permutes D.diag
evecs = zeros(Td, size(D))
@inbounds for i in eachindex(p)
evecs[p[i],i] = one(Td)
end
else
evecs = Matrix{Td}(I, size(D))
end
Eigen(λ, evecs)
end

#Singular system
svdvals(D::Diagonal{<:Number}) = sort!(abs.(D.diag), rev = true)
svdvals(D::Diagonal) = [svdvals(v) for v in D.diag]
function svd(D::Diagonal{T}) where T<:Number
S = abs.(D.diag)
piv = sortperm(S, rev = true)
U = Diagonal(D.diag ./ S)
Up = hcat([U[:,i] for i = 1:length(D.diag)][piv]...)
V = Diagonal(fill!(similar(D.diag), one(T)))
Vp = hcat([V[:,i] for i = 1:length(D.diag)][piv]...)
return SVD(Up, S[piv], copy(Vp'))
function svd(D::Diagonal{T}) where {T<:Number}
d = D.diag
s = abs.(d)
piv = sortperm(s, rev = true)
S = s[piv]
Td = typeof(oneunit(T)/oneunit(T))
U = zeros(Td, size(D))
Vt = copy(U)
for i in 1:length(d)
j = piv[i]
U[j,i] = d[j] / S[i]
Vt[i,j] = one(Td)
end
return SVD(U, S, Vt)
end

# disambiguation methods: * and / of Diagonal and Adj/Trans AbsVec
Expand Down
26 changes: 25 additions & 1 deletion stdlib/LinearAlgebra/test/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,10 @@ module TestDiagonal
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasFloat, BlasComplex

const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Furlongs) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Furlongs.jl"))
using .Main.Furlongs

n=12 #Size of matrix problem to test
Random.seed!(1)

Expand Down Expand Up @@ -344,8 +348,12 @@ Random.seed!(1)

@testset "Eigensystem" begin
eigD = eigen(D)
@test Diagonal(eigD.values) D
@test Diagonal(eigD.values) == D
@test eigD.vectors == Matrix(I, size(D))
eigsortD = eigen(D, sortby=LinearAlgebra.eigsortby)
@test eigsortD.values !== D.diag
@test eigsortD.values == sort(D.diag, by=LinearAlgebra.eigsortby)
@test Matrix(eigsortD) == D
end

@testset "ldiv" begin
Expand Down Expand Up @@ -411,6 +419,22 @@ Random.seed!(1)
@test svd(D).V == V
end

@testset "svd/eigen with Diagonal{Furlong}" begin
Du = Furlong.(D)
@test Du isa Diagonal{<:Furlong{1}}
F = svd(Du)
U, s, V = F
@test map(x -> x.val, Matrix(F)) ≈ map(x -> x.val, Du)
@test svdvals(Du) == s
@test U isa AbstractMatrix{<:Furlong{0}}
@test V isa AbstractMatrix{<:Furlong{0}}
@test s isa AbstractVector{<:Furlong{1}}
E = eigen(Du)
vals, vecs = E
@test Matrix(E) == Du
@test vals isa AbstractVector{<:Furlong{1}}
@test vecs isa AbstractMatrix{<:Furlong{0}}
end
end

@testset "rdiv! (#40887)" begin
Expand Down