Skip to content

feat: add Google embedding integration #1304

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/user-guides/configuration-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -538,6 +538,7 @@ The following tables lists the supported embedding providers:
| OpenAI | `openai` | `text-embedding-ada-002`, etc. |
| SentenceTransformers | `SentenceTransformers` | `all-MiniLM-L6-v2`, etc. |
| NVIDIA AI Endpoints | `nvidia_ai_endpoints` | `nv-embed-v1`, etc. |
| Google | `google` | `gemini-embedding-001`, etc. |

```{note}
You can use any of the supported models for any of the supported embedding providers.
Expand Down
3 changes: 2 additions & 1 deletion nemoguardrails/embeddings/providers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

from typing import Optional, Type

from . import fastembed, nim, openai, sentence_transformers
from . import fastembed, google, nim, openai, sentence_transformers
from .base import EmbeddingModel
from .registry import EmbeddingProviderRegistry

Expand Down Expand Up @@ -68,6 +68,7 @@ def register_embedding_provider(
register_embedding_provider(sentence_transformers.SentenceTransformerEmbeddingModel)
register_embedding_provider(nim.NIMEmbeddingModel)
register_embedding_provider(nim.NVIDIAAIEndpointsEmbeddingModel)
register_embedding_provider(google.GoogleEmbeddingModel)


def init_embedding_model(
Expand Down
91 changes: 91 additions & 0 deletions nemoguardrails/embeddings/providers/google.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List

from .base import EmbeddingModel


class GoogleEmbeddingModel(EmbeddingModel):
"""Embedding model using langchain_google_genai.

This class is a wrapper for using embedding models powered by Google AI (hosted in the Google Cloud).

To use, you must have either:

1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or
2. Pass your API key using the google_api_key kwarg to the
GoogleGenerativeAIEmbeddings constructor.

Args:
embedding_model (str): The name of the embedding model to be used.

Attributes:
model: The name of the embedding model.
embedding_size (int): The size of the embeddings.
"""

engine_name = "google"

def __init__(self, embedding_model: str, **kwargs):
try:
from langchain_google_genai import GoogleGenerativeAIEmbeddings

except ImportError:
raise ImportError(
"Could not import langchain_google_genai, please install it with "
"`pip install langchain-google-genai`."
)

self.model = embedding_model
self.document_embedder = GoogleGenerativeAIEmbeddings(
model=embedding_model, **kwargs
)

self.embedding_size_dict = {
"gemini-embedding-001": 3072,
"text-embedding-005": 768,
"text-multilingual-embedding-002": 768,
}

if self.model in self.embedding_size_dict:
self.embedding_size = self.embedding_size_dict[self.model]
else:
# Perform a first encoding to get the embedding size
self.embedding_size = len(self.encode(["test"])[0])

async def encode_async(self, documents: List[str]) -> List[List[float]]:
"""Encode a list of documents into their corresponding sentence embeddings.

Args:
documents (List[str]): The list of documents to be encoded.

Returns:
List[List[float]]: The list of sentence embeddings, where each embedding is a list of floats.
"""

result = await self.document_embedder.aembed_documents(documents)
return result

def encode(self, documents: List[str]) -> List[List[float]]:
"""Encode a list of documents into their corresponding sentence embeddings.

Args:
documents (List[str]): The list of documents to be encoded.

Returns:
List[List[float]]: The list of sentence embeddings, where each embedding is a list of floats.
"""
return self.document_embedder.embed_documents(documents)
12 changes: 12 additions & 0 deletions tests/test_configs/with_google_embeddings/config.co
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
define user ask capabilities
"What can you do?"
"What can you help me with?"
"tell me what you can do"
"tell me about you"

define bot inform capabilities
"I am an AI assistant that helps answer questions."

define flow
user ask capabilities
bot inform capabilities
8 changes: 8 additions & 0 deletions tests/test_configs/with_google_embeddings/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
models:
- type: main
engine: openai
model: gpt-3.5-turbo-instruct

- type: embeddings
engine: google
model: gemini-embedding-001
97 changes: 97 additions & 0 deletions tests/test_embeddings_google.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import pytest

from nemoguardrails import LLMRails, RailsConfig

try:
from nemoguardrails.embeddings.providers.google import GoogleEmbeddingModel
except ImportError:
# Ignore this if running in test environment when langchain-google-genai not installed.
GoogleEmbeddingModel = None

CONFIGS_FOLDER = os.path.join(os.path.dirname(__file__), ".", "test_configs")

LIVE_TEST_MODE = os.environ.get("LIVE_TEST")


@pytest.fixture
def app():
"""Load the configuration where we replace FastEmbed with Google."""
config = RailsConfig.from_path(
os.path.join(CONFIGS_FOLDER, "with_google_embeddings")
)

return LLMRails(config)


@pytest.mark.skipif(not LIVE_TEST_MODE, reason="Not in live mode.")
def test_custom_llm_registration(app):
assert isinstance(
app.llm_generation_actions.flows_index._model, GoogleEmbeddingModel
)


@pytest.mark.skipif(not LIVE_TEST_MODE, reason="Not in live mode.")
@pytest.mark.asyncio
async def test_live_query():
config = RailsConfig.from_path(
os.path.join(CONFIGS_FOLDER, "with_google_embeddings")
)
app = LLMRails(config)

result = await app.generate_async(
messages=[{"role": "user", "content": "tell me what you can do"}]
)

assert result == {
"role": "assistant",
"content": "I am an AI assistant that helps answer questions.",
}


@pytest.mark.skipif(not LIVE_TEST_MODE, reason="Not in live mode.")
@pytest.mark.asyncio
def test_live_query(app):
result = app.generate(
messages=[{"role": "user", "content": "tell me what you can do"}]
)

assert result == {
"role": "assistant",
"content": "I am an AI assistant that helps answer questions.",
}


@pytest.mark.skipif(not LIVE_TEST_MODE, reason="Not in live mode.")
def test_sync_embeddings():
model = GoogleEmbeddingModel("gemini-embedding-001")

result = model.encode(["test"])

assert len(result[0]) == 3072


@pytest.mark.skipif(not LIVE_TEST_MODE, reason="Not in live mode.")
@pytest.mark.asyncio
async def test_async_embeddings():
model = GoogleEmbeddingModel("gemini-embedding-001")

result = await model.encode_async(["test"])

assert len(result[0]) == 3072