Skip to content

Conversation

pfultz2
Copy link
Collaborator

@pfultz2 pfultz2 commented Jul 6, 2022

No description provided.

@codecov
Copy link

codecov bot commented Jul 6, 2022

Codecov Report

Merging #1289 (62c707a) into develop (f253160) will not change coverage.
The diff coverage is n/a.

❗ Current head 62c707a differs from pull request most recent head 6ee87f9. Consider uploading reports for the commit 6ee87f9 to get more accurate results

@@           Coverage Diff            @@
##           develop    #1289   +/-   ##
========================================
  Coverage    93.14%   93.14%           
========================================
  Files          437      437           
  Lines        14297    14297           
========================================
  Hits         13317    13317           
  Misses         980      980           

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update f253160...6ee87f9. Read the comment docs.

@causten causten requested review from kahmed10 and turneram July 19, 2022 20:41
@migraphx-bot
Copy link
Collaborator

Test Rate new
ce738c
Rate old
bab950
Diff Compare
torchvision-resnet50 2,220.43 2,224.44 -0.18%
torchvision-resnet50_fp16 4,739.90 4,748.13 -0.17%
torchvision-alexnet 4,971.68 4,979.89 -0.16%
torchvision-alexnet_fp16 26,117.23 26,234.13 -0.45%
torchvision-densenet121 1,637.34 1,633.89 0.21%
torchvision-densenet121_fp16 2,528.15 2,530.44 -0.09%
torchvision-inceptionv3 1,093.03 1,095.09 -0.19%
torchvision-inceptionv3_fp16 1,985.59 1,984.58 0.05%
torchvision-vgg16 894.81 895.54 -0.08%
torchvision-vgg16_fp16 1,725.40 1,727.91 -0.15%
cadene-inceptionv4 528.47 528.75 -0.05%
cadene-resnext64x4 577.17 577.67 -0.09%
slim-mobilenet 6,402.41 6,396.55 0.09%
slim-nasnetalarge 203.20 203.33 -0.06%
slim-resnet50v2 2,427.60 2,430.00 -0.10%
bert-mrpc-onnx 639.04 639.18 -0.02%
bert-mrpc-tf 296.87 294.95 0.65% 🔆
pytorch-examples-wlang-gru 230.14 232.24 -0.90%
pytorch-examples-wlang-lstm 305.95 306.25 -0.10%
torchvision-resnet50_1 513.80 512.38 0.28%
torchvision-inceptionv3_1 303.28 303.38 -0.03%
torchvision-vgg16_1 462.43 463.19 -0.16%
cadene-dpn92_1 297.40 302.66 -1.74%
cadene-resnext101_1 235.80 229.29 2.84%
slim-vgg16_1 64.00 64.03 -0.05%
slim-mobilenet_1 1,999.85 1,977.32 1.14% 🔆
slim-inceptionv4_1 196.00 195.67 0.17%
onnx-taau-downsample 259.07 259.00 0.03%

Check results before merge 🔆

@migraphx-bot
Copy link
Collaborator

Test Rate new
3852e4
Rate old
bab950
Diff Compare
torchvision-resnet50 2,224.62 2,224.44 0.01%
torchvision-resnet50_fp16 4,748.58 4,748.13 0.01%
torchvision-alexnet 4,987.84 4,979.89 0.16%
torchvision-alexnet_fp16 26,342.33 26,234.13 0.41%
torchvision-densenet121 1,633.97 1,633.89 0.01%
torchvision-densenet121_fp16 2,524.34 2,530.44 -0.24%
torchvision-inceptionv3 1,096.54 1,095.09 0.13%
torchvision-inceptionv3_fp16 1,982.15 1,984.58 -0.12%
torchvision-vgg16 895.85 895.54 0.03%
torchvision-vgg16_fp16 1,727.62 1,727.91 -0.02%
cadene-inceptionv4 528.37 528.75 -0.07%
cadene-resnext64x4 577.64 577.67 -0.01%
slim-mobilenet 6,398.91 6,396.55 0.04%
slim-nasnetalarge 203.26 203.33 -0.03%
slim-resnet50v2 2,428.69 2,430.00 -0.05%
bert-mrpc-onnx 638.32 639.18 -0.13%
bert-mrpc-tf 295.64 294.95 0.23%
pytorch-examples-wlang-gru 229.15 232.24 -1.33%
pytorch-examples-wlang-lstm 306.78 306.25 0.17%
torchvision-resnet50_1 513.06 512.38 0.13%
torchvision-inceptionv3_1 302.97 303.38 -0.14%
torchvision-vgg16_1 463.29 463.19 0.02%
cadene-dpn92_1 311.18 302.66 2.82%
cadene-resnext101_1 237.52 229.29 3.59%
slim-vgg16_1 64.04 64.03 0.01%
slim-mobilenet_1 1,987.67 1,977.32 0.52% 🔆
slim-inceptionv4_1 195.84 195.67 0.09%
onnx-taau-downsample 259.08 259.00 0.03%

Check results before merge 🔆

for(auto i : range(n))
{
(void)i;
host_time += time<milliseconds>(run);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we switch from milliseconds to microseconds? I know hipEventElapsedTime returns time in ms, but it's resolution is approximately 1 microsecond. So multiplying the result by 1000. This is more for readability as we could be dealing with smaller kernels or small improvements to a bigger kernel.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The host time is usually pretty large, and it would make the time inconsistent with the perf report.

@umangyadav
Copy link
Member

@pfultz2 @causten can this be merged ?

@migraphx-bot
Copy link
Collaborator

migraphx-bot commented Aug 27, 2022

Test Rate new
eba1e7
Rate old
875287
Diff Compare
torchvision-resnet50 2,222.34 2,218.94 0.15%
torchvision-resnet50_fp16 4,752.11 4,748.02 0.09%
torchvision-alexnet 4,973.38 4,977.02 -0.07%
torchvision-alexnet_fp16 26,144.65 26,216.08 -0.27%
torchvision-densenet121 1,629.26 1,626.27 0.18%
torchvision-densenet121_fp16 2,527.65 2,530.02 -0.09%
torchvision-inceptionv3 1,096.43 1,096.56 -0.01%
torchvision-inceptionv3_fp16 1,990.15 1,983.19 0.35%
torchvision-vgg16 894.35 894.94 -0.07%
torchvision-vgg16_fp16 1,724.77 1,725.04 -0.02%
cadene-inceptionv4 528.86 528.41 0.08%
cadene-resnext64x4 576.83 575.42 0.24%
slim-mobilenet 6,396.48 6,390.86 0.09%
slim-nasnetalarge 202.97 203.03 -0.03%
slim-resnet50v2 2,425.22 nan nan%
bert-mrpc-onnx 638.68 684.31 -6.67%
bert-mrpc-tf 296.93 308.71 -3.82%
pytorch-examples-wlang-gru 228.92 242.24 -5.50%
pytorch-examples-wlang-lstm 305.81 306.38 -0.19%
torchvision-resnet50_1 510.62 510.54 0.01%
torchvision-inceptionv3_1 303.04 292.48 3.61%
torchvision-vgg16_1 463.32 463.42 -0.02%
cadene-dpn92_1 311.28 307.72 1.15%
cadene-resnext101_1 237.49 234.34 1.34%
slim-vgg16_1 63.98 63.99 -0.02%
slim-mobilenet_1 1,971.10 1,979.40 -0.42%
slim-inceptionv4_1 195.63 184.11 6.26%
onnx-taau-downsample 258.88 259.30 -0.16%

This build is not recommended to merge 🔴

@causten causten merged commit 349635c into develop Aug 27, 2022
@causten causten deleted the perk-kernel branch August 27, 2022 12:08
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

6 participants