Skip to content

Fixes AI.MODELGET to return INPUTS,OUTPUTS, BATCHSIZE, and MINBATCHSIZE #384

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 19 additions & 6 deletions docs/commands.md
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,10 @@ An array of alternating key-value pairs as follows:
1. **BACKEND**: the backend used by the model as a String
1. **DEVICE**: the device used to execute the model as a String
1. **TAG**: the model's tag as a String
1. **BATCHSIZE**: The maximum size of any batch of incoming requests. If `BATCHSIZE` is equal to 0 each incoming request is served immediately. When `BATCHSIZE` is greater than 0, the engine will batch incoming requests from multiple clients that use the model with input tensors of the same shape.
1. **MINBATCHSIZE**: The minimum size of any batch of incoming requests.
1. **INPUTS**: array reply with one or more names of the model's input nodes (applicable only for TensorFlow models)
1. **OUTPUTS**: array reply with one or more names of the model's output nodes (applicable only for TensorFlow models)
1. **BLOB**: a blob containing the serialized model (when called with the `BLOB` argument) as a String

**Examples**
Expand All @@ -224,12 +228,21 @@ Assuming that your model is stored under the 'mymodel' key, you can obtain its m

```
redis> AI.MODELGET mymodel META
1) "backend"
2) TF
3) "device"
4) CPU
5) "tag"
6) imagenet:5.0
1) "backend"
2) "TF"
3) "device"
4) "CPU"
5) "tag"
6) "imagenet:5.0"
7) "batchsize"
8) (integer) 0
9) "minbatchsize"
10) (integer) 0
11) "inputs"
12) 1) "a"
2) "b"
13) "outputs"
14) 1) "c"
```

You can also save it to the local file 'model.ext' with [`redis-cli`](https://redis.io/topics/cli) like so:
Expand Down
28 changes: 25 additions & 3 deletions src/redisai.c
Original file line number Diff line number Diff line change
Expand Up @@ -368,7 +368,7 @@ int RedisAI_ModelGet_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,

RAI_Model *mto;
RedisModuleKey *key;
const int status = RAI_GetModelFromKeyspace( ctx, argv[1], &key, &mto, REDISMODULE_READ | REDISMODULE_WRITE);
const int status = RAI_GetModelFromKeyspace( ctx, argv[1], &key, &mto, REDISMODULE_READ );
if (status == REDISMODULE_ERR) {
return REDISMODULE_ERR;
}
Expand Down Expand Up @@ -418,12 +418,12 @@ int RedisAI_ModelGet_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,
return REDISMODULE_OK;
}

int outentries = blob ? 8 : 6;
const int outentries = blob ? 16 : 14;

RedisModule_ReplyWithArray(ctx, outentries);

RedisModule_ReplyWithCString(ctx, "backend");
const char* backendstr = RAI_BackendName(mto->backend);
const char *backendstr = RAI_BackendName(mto->backend);
RedisModule_ReplyWithCString(ctx, backendstr);

RedisModule_ReplyWithCString(ctx, "device");
Expand All @@ -432,6 +432,28 @@ int RedisAI_ModelGet_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,
RedisModule_ReplyWithCString(ctx, "tag");
RedisModule_ReplyWithCString(ctx, mto->tag ? mto->tag : "");

RedisModule_ReplyWithCString(ctx, "batchsize");
RedisModule_ReplyWithLongLong(ctx, (long)mto->opts.batchsize);

RedisModule_ReplyWithCString(ctx, "minbatchsize");
RedisModule_ReplyWithLongLong(ctx, (long)mto->opts.minbatchsize);

RedisModule_ReplyWithCString(ctx, "inputs");
const size_t ninputs = array_len(mto->inputs);
RedisModule_ReplyWithArray(ctx, (long)ninputs);

for (size_t i = 0; i < ninputs; i++) {
RedisModule_ReplyWithCString(ctx, mto->inputs[i]);
}

RedisModule_ReplyWithCString(ctx, "outputs");
const size_t noutputs = array_len(mto->outputs);
RedisModule_ReplyWithArray(ctx, (long)noutputs);

for (size_t i = 0; i < noutputs; i++) {
RedisModule_ReplyWithCString(ctx, mto->outputs[i]);
}

if (meta && blob) {
RedisModule_ReplyWithCString(ctx, "blob");
RedisModule_ReplyWithStringBuffer(ctx, buffer, len);
Expand Down
37 changes: 28 additions & 9 deletions test/tests_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,21 +36,27 @@ def test_onnx_modelrun_mnist(env):
ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'')
# assert there are no inputs or outputs
env.assertEqual(len(ret[11]), 0)
env.assertEqual(len(ret[13]), 0)

ret = con.execute_command('AI.MODELSET', 'm', 'ONNX', DEVICE, 'TAG', 'asdf', 'BLOB', model_pb)
ret = con.execute_command('AI.MODELSET', 'm', 'ONNX', DEVICE, 'TAG', 'version:2', 'BLOB', model_pb)
env.assertEqual(ret, b'OK')

ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'asdf')

# TODO: enable me
# env.assertEqual(ret[0], b'ONNX')
# env.assertEqual(ret[1], b'CPU')
env.assertEqual(len(ret), 14)
# TODO: enable me. CI is having issues on GPU asserts of ONNX and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'ONNX')
env.assertEqual(ret[3], b'CPU')
env.assertEqual(ret[5], b'version:2')
# assert there are no inputs or outputs
env.assertEqual(len(ret[11]), 0)
env.assertEqual(len(ret[13]), 0)

try:
con.execute_command('AI.MODELSET', 'm', 'ONNX', DEVICE, 'BLOB', wrong_model_pb)
Expand Down Expand Up @@ -166,6 +172,19 @@ def test_onnx_modelrun_mnist_autobatch(env):
'BATCHSIZE', 2, 'MINBATCHSIZE', 2, 'BLOB', model_pb)
env.assertEqual(ret, b'OK')

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 14)
# TODO: enable me. CI is having issues on GPU asserts of ONNX and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'ONNX')
env.assertEqual(ret[3], b'CPU')
env.assertEqual(ret[5], b'')
env.assertEqual(ret[7], 2)
env.assertEqual(ret[9], 2)
# assert there are no inputs or outputs
env.assertEqual(len(ret[11]), 0)
env.assertEqual(len(ret[13]), 0)

con.execute_command('AI.TENSORSET', 'a', 'FLOAT', 1, 1, 28, 28, 'BLOB', sample_raw)
con.execute_command('AI.TENSORSET', 'c', 'FLOAT', 1, 1, 28, 28, 'BLOB', sample_raw)

Expand Down
31 changes: 20 additions & 11 deletions test/tests_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,22 +62,31 @@ def test_pytorch_modelrun(env):
ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'')

ret = con.execute_command('AI.MODELSET', 'm', 'TORCH', DEVICE, 'TAG', 'asdf', 'BLOB', model_pb)
ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 14)
# TODO: enable me. CI is having issues on GPU asserts of TORCH and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'TORCH')
env.assertEqual(ret[3], b'CPU')
env.assertEqual(ret[5], b'')
env.assertEqual(ret[7], 0)
env.assertEqual(ret[9], 0)
# assert there are no inputs or outputs
env.assertEqual(len(ret[11]), 0)
env.assertEqual(len(ret[13]), 0)

ret = con.execute_command('AI.MODELSET', 'm', 'TORCH', DEVICE, 'TAG', 'my:tag:v3', 'BLOB', model_pb)
env.assertEqual(ret, b'OK')

ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'asdf')


# TODO: enable me
# env.assertEqual(ret[0], b'TORCH')
# env.assertEqual(ret[1], b'CPU')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'my:tag:v3')
# TODO: enable me. CI is having issues on GPU asserts of TORCH and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'TORCH')
env.assertEqual(ret[3], b'CPU')

try:
con.execute_command('AI.MODELSET', 'm', 'TORCH', DEVICE, 'BLOB', wrong_model_pb)
Expand Down
37 changes: 23 additions & 14 deletions test/tests_tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,23 +187,28 @@ def test_run_tf_model(env):
ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'')
env.assertEqual(ret[11][0], b'a')
env.assertEqual(ret[11][1], b'b')
env.assertEqual(ret[13][0], b'mul')

ret = con.execute_command('AI.MODELSET', 'm', 'TF', DEVICE, 'TAG', 'asdf',
ret = con.execute_command('AI.MODELSET', 'm', 'TF', DEVICE, 'TAG', 'version:1',
'INPUTS', 'a', 'b', 'OUTPUTS', 'mul', 'BLOB', model_pb)
env.assertEqual(ret, b'OK')

ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'asdf')


# TODO: enable me
# env.assertEqual(ret[0], b'TF')
# env.assertEqual(ret[1], b'CPU')
env.assertEqual(len(ret), 14)
# TODO: enable me. CI is having issues on GPU asserts of TF and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'TF')
env.assertEqual(ret[3], b'CPU')
env.assertEqual(ret[5], b'version:1')
env.assertEqual(ret[11][0], b'a')
env.assertEqual(ret[11][1], b'b')
env.assertEqual(ret[13][0], b'mul')

con.execute_command('AI.TENSORSET', 'a', 'FLOAT',
2, 2, 'VALUES', 2, 3, 2, 3)
Expand Down Expand Up @@ -258,8 +263,10 @@ def test_run_tf2_model(env):
ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'')
env.assertEqual(ret[11][0], b'x')
env.assertEqual(ret[13][0], b'Identity')

ret = con.execute_command('AI.MODELSET', 'm', 'TF', DEVICE, 'TAG', 'asdf',
'INPUTS', 'x', 'OUTPUTS', 'Identity', 'BLOB', model_pb)
Expand All @@ -268,8 +275,10 @@ def test_run_tf2_model(env):
ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'asdf')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'asdf')
env.assertEqual(ret[11][0], b'x')
env.assertEqual(ret[13][0], b'Identity')

zero_values = [0] * (28 * 28)

Expand Down
17 changes: 9 additions & 8 deletions test/tests_tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,26 +35,27 @@ def test_run_tflite_model(env):
env.assertEqual(ret, b'OK')

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'')

ret = con.execute_command('AI.MODELSET', 'm', 'TFLITE', 'CPU', 'TAG', 'asdf', 'BLOB', model_pb)
env.assertEqual(ret, b'OK')

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
env.assertEqual(ret[-1], b'asdf')
env.assertEqual(len(ret), 14)
env.assertEqual(ret[5], b'asdf')

ret = con.execute_command('AI.TENSORSET', 'a', 'FLOAT', 1, 1, 28, 28, 'BLOB', sample_raw)
env.assertEqual(ret, b'OK')

ensureSlaveSynced(con, env)

ret = con.execute_command('AI.MODELGET', 'm', 'META')
env.assertEqual(len(ret), 6)
# TODO: enable me
# env.assertEqual(ret[0], b'TFLITE')
# env.assertEqual(ret[1], b'CPU')
env.assertEqual(len(ret), 14)
# TODO: enable me. CI is having issues on GPU asserts of TFLITE and CPU
if DEVICE == "CPU":
env.assertEqual(ret[1], b'TFLITE')
env.assertEqual(ret[3], b'CPU')

con.execute_command('AI.MODELRUN', 'm', 'INPUTS', 'a', 'OUTPUTS', 'b', 'c')

Expand Down