Skip to content

replace main Zygote.adjoints with ChainRules rrules #673

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 21, 2021

Conversation

ChrisRackauckas
Copy link
Member

Part of SciML/SciMLBase.jl#69

And needs to be done with SciML/SciMLSensitivity.jl#428

But currently getting:

using DiffEqSensitivity, OrdinaryDiffEq, Zygote
function fiip(du,u,p,t)
  du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2]
  du[2] = dy = -p[3]*u[2] + p[4]*u[1]*u[2]
end
function foop(u,p,t)
  dx = p[1]*u[1] - p[2]*u[1]*u[2]
  dy = -p[3]*u[2] + p[4]*u[1]*u[2]
  [dx,dy]
end

p = [1.5,1.0,3.0,1.0]; u0 = [1.0;1.0]
prob = ODEProblem(fiip,u0,(0.0,10.0),p)
du01,dp1 = Zygote.gradient((u0,p)->sum(solve(prob,Tsit5(),u0=u0,p=p,abstol=1e-14,
                            reltol=1e-14,saveat=0.1,sensealg=QuadratureAdjoint())),u0,p)
ArgumentError: tuple must be non-empty
first(#unused#::Tuple{}) at tuple.jl:134
_unapply(t::Nothing, xs::Tuple{}) at lib.jl:163
_unapply(t::Tuple{Nothing}, xs::Tuple{}) at lib.jl:167
_unapply(t::Tuple{Tuple{Nothing}}, xs::Tuple{}) at lib.jl:167
_unapply(t::Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, xs::Tuple{Nothing, Nothing, Nothing, Vector{Float64}, Vector{Float64}, Nothing}) at lib.jl:168
unapply(t::Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, xs::Tuple{Nothing, Nothing, Nothing, Vector{Float64}, Vector{Float64}, Nothing}) at lib.jl:177
#193 at lib.jl:195 [inlined]
(::Zygote.var"#1713#back#195"{Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, Zygote.var"#kw_zpullback#40"{DiffEqSensitivity.var"#adjoint_sensitivity_backpass#179"{Base.Iterators.Pairs{Symbol, Float64, Tuple{Symbol, Symbol}, NamedTuple{(:abstol, :reltol), Tuple{Float64, Float64}}}, Tsit5, QuadratureAdjoint{0, true, Val{:central}, Bool}, Vector{Float64}, Vector{Float64}, Tuple{}, Colon, NamedTuple{(:abstol, :reltol), Tuple{Float64, Float64}}}}}})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at adjoint.jl:59
Pullback at solve.jl:70 [inlined]
(::typeof((#solve#59)))(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at interface2.jl:0
(::Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, typeof((#solve#59))})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at lib.jl:194
(::Zygote.var"#1713#back#195"{Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, typeof((#solve#59))}})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at adjoint.jl:59
Pullback at solve.jl:68 [inlined]
(::typeof((solve##kw)))(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at interface2.jl:0
Pullback at test.jl:14 [inlined]
(::typeof((#7)))(Δ::Float64) at interface2.jl:0
(::Zygote.var"#46#47"{typeof((#7))})(Δ::Float64) at interface.jl:41
gradient(::Function, ::Vector{Float64}, ::Vararg{Vector{Float64}, N} where N) at interface.jl:59
top-level scope at test.jl:14
eval at boot.jl:360 [inlined]

Part of SciML/SciMLBase.jl#69

And needs to be done with SciML/SciMLSensitivity.jl#428

But currently getting:

```julia
using DiffEqSensitivity, OrdinaryDiffEq, Zygote
function fiip(du,u,p,t)
  du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2]
  du[2] = dy = -p[3]*u[2] + p[4]*u[1]*u[2]
end
function foop(u,p,t)
  dx = p[1]*u[1] - p[2]*u[1]*u[2]
  dy = -p[3]*u[2] + p[4]*u[1]*u[2]
  [dx,dy]
end

p = [1.5,1.0,3.0,1.0]; u0 = [1.0;1.0]
prob = ODEProblem(fiip,u0,(0.0,10.0),p)
du01,dp1 = Zygote.gradient((u0,p)->sum(solve(prob,Tsit5(),u0=u0,p=p,abstol=1e-14,
                            reltol=1e-14,saveat=0.1,sensealg=QuadratureAdjoint())),u0,p)
```

```julia
ArgumentError: tuple must be non-empty
first(#unused#::Tuple{}) at tuple.jl:134
_unapply(t::Nothing, xs::Tuple{}) at lib.jl:163
_unapply(t::Tuple{Nothing}, xs::Tuple{}) at lib.jl:167
_unapply(t::Tuple{Tuple{Nothing}}, xs::Tuple{}) at lib.jl:167
_unapply(t::Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, xs::Tuple{Nothing, Nothing, Nothing, Vector{Float64}, Vector{Float64}, Nothing}) at lib.jl:168
unapply(t::Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, xs::Tuple{Nothing, Nothing, Nothing, Vector{Float64}, Vector{Float64}, Nothing}) at lib.jl:177
#193 at lib.jl:195 [inlined]
(::Zygote.var"#1713#back#195"{Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, Zygote.var"#kw_zpullback#40"{DiffEqSensitivity.var"#adjoint_sensitivity_backpass#179"{Base.Iterators.Pairs{Symbol, Float64, Tuple{Symbol, Symbol}, NamedTuple{(:abstol, :reltol), Tuple{Float64, Float64}}}, Tsit5, QuadratureAdjoint{0, true, Val{:central}, Bool}, Vector{Float64}, Vector{Float64}, Tuple{}, Colon, NamedTuple{(:abstol, :reltol), Tuple{Float64, Float64}}}}}})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at adjoint.jl:59
Pullback at solve.jl:70 [inlined]
(::typeof(∂(#solve#59)))(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at interface2.jl:0
(::Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, typeof(∂(#solve#59))})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at lib.jl:194
(::Zygote.var"#1713#back#195"{Zygote.var"#193#194"{Tuple{NTuple{6, Nothing}, Tuple{Nothing}}, typeof(∂(#solve#59))}})(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at adjoint.jl:59
Pullback at solve.jl:68 [inlined]
(::typeof(∂(solve##kw)))(Δ::FillArrays.Fill{Float64, 2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) at interface2.jl:0
Pullback at test.jl:14 [inlined]
(::typeof(∂(#7)))(Δ::Float64) at interface2.jl:0
(::Zygote.var"#46#47"{typeof(∂(#7))})(Δ::Float64) at interface.jl:41
gradient(::Function, ::Vector{Float64}, ::Vararg{Vector{Float64}, N} where N) at interface.jl:59
top-level scope at test.jl:14
eval at boot.jl:360 [inlined]
```
@oxinabox
Copy link

where is adjoint_sensitivity_backpass defined?

@ChrisRackauckas
Copy link
Member Author

All of the adjoints are in DiffEqSensitivity since it has a ton of dependencies.

https://github.com/SciML/DiffEqSensitivity.jl/blob/b0cc6834a92047e7e85dc1155267b794b43694a5/src/concrete_solve.jl#L133

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants