Skip to content

DAEProblem without differential initial conditions #65

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
e-duar-do opened this issue Jun 14, 2021 · 1 comment
Open

DAEProblem without differential initial conditions #65

e-duar-do opened this issue Jun 14, 2021 · 1 comment

Comments

@e-duar-do
Copy link

It would be nice to have a DAEProblem constructor that did not require the user to specify du0, as this is often redundant.
Or are there good reasons to require this?

@ChrisRackauckas
Copy link
Member

No good reason. Sometimes u0 isn't even required. This is a bad early design decision we need to reconsider at some point. But what they end up being is the initial guess for the initialization algorithms, so they are still somewhat useful.

ChrisRackauckas added a commit that referenced this issue Jan 18, 2023
This should be a nice improvement overall to the health of the debugging experience. For example, the code from this post (https://discourse.julialang.org/t/optimizationmoi-ipopt-violating-inequality-constraint/92608) led to a question that took a bit to understand. But now when you run

```julia
import Optimization
import OptimizationMOI, Ipopt

const AV{T} = AbstractVector{T}

function model_constraints!(out::AV{<:Real}, u::AV{<:Real}, data)
    # Model parameters
    dt, a, b = u
    out[1] = a - 1/dt # Must be < 0
    @info "Must be NEGATIVE: $(out[1])"
end

function model_variance(u::AV{T}, data::AV{<:Real}) where T<:Real
    # Model parameters
    dt, a, b = u
    # Compute variance
    variance = zeros(T, length(data))
    variance[1] = one(T)
    for t in 1:(length(data) - 1)
        variance[t+1] = (1 - dt * a) * variance[t] + dt * data[t]^2 + dt * b
    end
    variance
end

function model_loss(u::AV{T}, data::AV{<:Real})::T where T<:Real
    variance = model_variance(u, data)
    loglik::T = zero(T)
    for (r, var) in zip(data, variance)
        loglik += -(log(2π) + log(var) + r^2 / var) / 2
    end
    -loglik / length(data)
end

function model_fit(u0::AV{T}, data::AV{<:Real}) where T<:Real
    func = Optimization.OptimizationFunction(
        model_loss, Optimization.AutoForwardDiff(),
        cons=model_constraints!
    )
    prob = Optimization.OptimizationProblem(
        func, u0, data,
        # 0 < dt < 1 && 1 < a < Inf && 0 < b < Inf
        lb=T[0.0, 1.0, 0.0], ub=T[1.0, Inf, Inf],
        #    ^dt  ^a   ^b         ^dt  ^a   ^b  <= model parameters 
        lcons=T[-Inf], ucons=T[0.0] # a - 1/dt < 0
    )
    sol = Optimization.solve(prob, Ipopt.Optimizer())
    sol.u
end

let 
    data = [
        2.1217711584057386, -0.28350145551002465, 2.3593492969513004, 0.192856733601849, 0.4566485836385113, 1.332717934013979, -1.286716619379847, 0.9868669960185211, 2.2358674776395224, -2.7933975791568098,
        1.2555871497124622, 1.276879759908467, -0.8392016987911409, -1.1580875182201849, 0.33201646080578456, -0.17212553408696898, 1.1275285626369556, 0.23041139849229036, 1.648423577528424, 2.384823597473343,
        -0.4005518932539747, -1.117737311211693, -0.9490152960583265, -1.1454539355078672, 1.4158585811404159, -0.18926972177257692, -0.2867541528181491, -1.2077459688543788, -0.6397173049620141, 0.66147783407023,
        0.049805188778543466, 0.902540117368457, -0.7018417933284938, 0.47342354473843684, 1.2620345361591596, -1.1483844812087018, -0.06487285080802752, 0.39020117013487715, -0.38454491504165356, 1.5125786171885645,
        -0.6751768274451174, 0.490916740658628, 0.012872300530924086, 0.46532447715746716, 0.34734421531357157, 0.3830452463549559, -0.8730874028738718, 0.4333151627834603, -0.40396180775692375, 2.0794821773418497,
        -0.5392735774960918, 0.6519326323752113, -1.4844713145398716, 0.3688828625691108, 1.010912990717231, 0.5018274939956874, 0.36656889279915833, -0.11403975693239479, -0.6460314660359935, -0.41997005020823147,
        0.9652752515820495, -0.37375868692702047, -0.5780729659197872, 2.642742798278919, 0.5076984117208074, -0.4906395089461916, -1.804352047187329, -0.8596663844837792, -0.7510485548262176, -0.07922589350581195,
        1.7201304839487317, 0.9024493222130577, -1.8216089665357902, 1.3929269238775426, -0.08410752079538407, 0.6423068180438288, 0.6615201016351212, 0.18546977816594887, -0.717521690742993, -1.0224309324751113,
        1.7748350222721971, 0.1929546575877559, -0.1581871639724676, 0.20198379311238596, -0.6919373947349301, -0.9253274269423383, 0.549366272989534, -1.9302106783541606, 0.7197247279281573, -1.220334158468621,
        -0.9187468058921053, -2.1452607604834184, -2.1558650694862687, -0.9387913392336701, -0.676637835687265, -0.16621998352492198, 0.5637177022958897, -0.5258315560278541, 0.8413359958184765, -0.9096866525337141
    ]
    # u0 = [0 < dt < 1, 1 < a < 1/dt, 0 < b < Inf]
    u0 = [0.3, 2.3333333333333335, 0.33333333333333337]
    @Assert 0 < u0[1] < 1
    @Assert 1 < u0[2] < 1 / u0[1]
    @Assert 0 < u0[3] < Inf
    @info "Optimizing..." u0
    model_fit(u0, data)
end
```

you get:

```julia
DomainError detected in the user `f` function. This occurs when the domain of a function is violated.
For example, `log(-1.0)` is undefined because `log` of a real number is defined to only output real
numbers, but `log` of a negative number is complex valued and therefore Julia throws a DomainError
by default. Cases to be aware of include:

* `log(x)`, `sqrt(x)`, `cbrt(x)`, etc. where `x<0`
* `x^y` for `x<0` floating point `y` (example: `(-1.0)^(1/2) == im`)

Within the context of SciML, this error can occur within the solver process even if the domain constraint
would not be violated in the solution due to adaptivity. For example, an ODE solver or optimization
routine may check a step at `new_u` which violates the domain constraint, and if violated reject the
step and use a smaller `dt`. However, the throwing of this error will have halted the solving process.

Thus the recommended fix is to replace this function with the equivalent ones from NaNMath.jl
(https://github.com/JuliaMath/NaNMath.jl) which returns a NaN instead of an error. The solver will then
effectively use the NaN within the error control routines to reject the out of bounds step. Additionally,
one could perform a domain transformation on the variables so that such an issue does not occur in the
definition of `f`.

For more information, check out the following FAQ page:
https://docs.sciml.ai/Optimization/stable/API/FAQ/#The-Solver-Seems-to-Violate-Constraints-During-the-Optimization,-Causing-DomainErrors,-What-Can-I-Do-About-That?

Note that detailed debugging information adds a small amount of overhead to SciML solves
which can be disabled with the keyword argument `debug = NoDebug()`.

The detailed original error message information from Julia reproduced below:


ERROR: DomainError with -2.4941978436429695:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
 [1] (::SciMLBase.VerboseDebugFunction{typeof(SciMLBase.__solve)})(::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Nothing, Vector{Float64}, Vector{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, ::Vararg{Any})
   @ SciMLBase C:\Users\accou\.julia\dev\SciMLBase\src\debug.jl:66
 [2] #solve#572
   @ c:\Users\accou\.julia\dev\SciMLBase\src\solve.jl:87 [inlined]
 [3] solve
   @ c:\Users\accou\.julia\dev\SciMLBase\src\solve.jl:80 [inlined]
 [4] model_fit(u0::Vector{Float64}, data::Vector{Float64})
   @ Main c:\Users\accou\OneDrive\Computer\Desktop\test.jl:77
 [5] top-level scope
   @ c:\Users\accou\OneDrive\Computer\Desktop\test.jl:88

caused by: DomainError with -2.4941978436429695:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
  [1] throw_complex_domainerror(f::Symbol, x::Float64)
    @ Base.Math .\math.jl:33
  [2] _log(x::Float64, base::Val{:ℯ}, func::Symbol)
    @ Base.Math .\special\log.jl:301
  [3] log
    @ .\special\log.jl:267 [inlined]
  [4] model_loss(u::Vector{Float64}, data::Vector{Float64})
    @ Main c:\Users\accou\OneDrive\Computer\Desktop\test.jl:60
  [5] OptimizationFunction
    @ C:\Users\accou\.julia\dev\SciMLBase\src\scimlfunctions.jl:3580 [inlined]
  [6] eval_objective(moiproblem::OptimizationMOI.MOIOptimizationProblem{Float64, SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Optimization.var"#57#74"{ForwardDiff.GradientConfig{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, Float64, 3}}}, Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}}, Optimization.var"#60#77"{ForwardDiff.HessianConfig{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, Float64, 3}, 3}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Float64}, Float64, 3}}}, Optimization.var"#56#73"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}}, Optimization.var"#63#80", Optimization.var"#64#81"{SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}}, Optimization.var"#66#83"{ForwardDiff.JacobianConfig{ForwardDiff.Tag{Optimization.var"#65#82"{Int64}, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#65#82"{Int64}, Float64}, Float64, 3}}}}, Optimization.var"#71#88"{Int64, Vector{ForwardDiff.HessianConfig{ForwardDiff.Tag{Optimization.var"#69#86"{Int64}, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#69#86"{Int64}, Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#69#86"{Int64}, Float64}, Float64, 3}, 3}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Optimization.var"#69#86"{Int64}, Float64}, Float64, 3}}}}, Vector{Optimization.var"#69#86"{Int64}}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}, Vector{Float64}, Matrix{Float64}, Matrix{Float64}, Matrix{Float64}}, x::Vector{Float64})
    @ OptimizationMOI C:\Users\accou\.julia\packages\OptimizationMOI\cHl7S\src\OptimizationMOI.jl:82
  [7] eval_objective(model::Ipopt.Optimizer, x::Vector{Float64})
    @ Ipopt C:\Users\accou\.julia\packages\Ipopt\rQctM\src\MOI_wrapper.jl:514
  [8] (::Ipopt.var"#eval_f_cb#1"{Ipopt.Optimizer})(x::Vector{Float64})
    @ Ipopt C:\Users\accou\.julia\packages\Ipopt\rQctM\src\MOI_wrapper.jl:597
  [9] _Eval_F_CB(n::Int32, x_ptr::Ptr{Float64}, x_new::Int32, obj_value::Ptr{Float64}, user_data::Ptr{Nothing})
    @ Ipopt C:\Users\accou\.julia\packages\Ipopt\rQctM\src\C_wrapper.jl:38
 [10] IpoptSolve(prob::Ipopt.IpoptProblem)
    @ Ipopt C:\Users\accou\.julia\packages\Ipopt\rQctM\src\C_wrapper.jl:442
 [11] optimize!(model::Ipopt.Optimizer)
    @ Ipopt C:\Users\accou\.julia\packages\Ipopt\rQctM\src\MOI_wrapper.jl:727
 [12] __solve(prob::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Nothing, Vector{Float64}, Vector{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, opt::Ipopt.Optimizer; maxiters::Nothing, maxtime::Nothing, abstol::Nothing, reltol::Nothing, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ OptimizationMOI C:\Users\accou\.julia\packages\OptimizationMOI\cHl7S\src\OptimizationMOI.jl:381
 [13] __solve(prob::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Nothing, Vector{Float64}, Vector{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, opt::Ipopt.Optimizer)
    @ OptimizationMOI C:\Users\accou\.julia\packages\OptimizationMOI\cHl7S\src\OptimizationMOI.jl:327
 [14] (::SciMLBase.VerboseDebugFunction{typeof(SciMLBase.__solve)})(::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, Optimization.AutoForwardDiff{nothing}, typeof(model_loss), Nothing, Nothing, Nothing, typeof(model_constraints!), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Vector{Float64}, Nothing, Vector{Float64}, Vector{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, ::Vararg{Any})
    @ SciMLBase C:\Users\accou\.julia\dev\SciMLBase\src\debug.jl:59
 [15] #solve#572
    @ c:\Users\accou\.julia\dev\SciMLBase\src\solve.jl:87 [inlined]
 [16] solve
    @ c:\Users\accou\.julia\dev\SciMLBase\src\solve.jl:80 [inlined]
 [17] model_fit(u0::Vector{Float64}, data::Vector{Float64})
    @ Main c:\Users\accou\OneDrive\Computer\Desktop\test.jl:77
 [18] top-level scope
    @ c:\Users\accou\OneDrive\Computer\Desktop\test.jl:88
```
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants