Skip to content
64 changes: 64 additions & 0 deletions machine_learning/loss_functions/hinge_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
"""
Hinge Loss

Description:
Compute the Hinge loss used for training SVM (Support Vector Machine).

Formula:
loss = max(0, 1 - true * pred)

Reference: https://en.wikipedia.org/wiki/Hinge_loss

Author: Poojan Smart
Email: [email protected]
"""

import numpy as np


def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the mean hinge loss for y_true and y_pred for binary classification.

Args:
y_true: Array of actual values (ground truth) encoded as -1 and 1.
y_pred: Array of predicted values.

Returns:
The hinge loss between y_true and y_pred.

Examples:
>>> y_true = np.array([-1, 1, 1, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
1.52
>>> y_true = np.array([-1, 1, 1, -1, 1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: Length of predicted and actual array must be same.
>>> y_true = np.array([-1, 1, 10, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: y_true can have values -1 or 1 only.
"""

if len(y_true) != len(y_pred):
raise ValueError("Length of predicted and actual array must be same.")

# Raise value error when y_true (encoded labels) have any other values
# than -1 and 1
if np.array_equal(np.sort(np.unique(y_true)), np.array([-1, 1])) is False:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
if np.array_equal(np.sort(np.unique(y_true)), np.array([-1, 1])) is False:
if np.any((y_true != 1) & (y_true != -1)):

This should do the same thing (check if any entry is neither 1 or -1)

raise ValueError("y_true can have values -1 or 1 only.")

hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
return np.mean(hinge_losses)


if __name__ == "__main__":
import doctest

doctest.testmod()