Skip to content
Merged
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions backtracking/power_sum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
"""
Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem
Find the number of ways that a given integer X, can be expressed as the sum
of the Nth powers of unique, natural numbers. For example, if X=13 and N=2.
We have to find all combinations of unique squares adding up to 13.
The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
"""

from math import pow


def backtrack(
needed_sum: int,
power: int,
current_number: int,
current_sum: int,
solutions_count: int,
) -> tuple[int, int]:
"""
>>> backtrack(13, 2, 1, 0, 0)
(0, 1)
>>> backtrack(100, 2, 1, 0, 0)
(0, 3)
>>> backtrack(100, 3, 1, 0, 0)
(0, 1)
>>> backtrack(800, 2, 1, 0, 0)
(0, 561)
>>> backtrack(1000, 10, 1, 0, 0)
(0, 0)
>>> backtrack(400, 2, 1, 0, 0)
(0, 55)
>>> backtrack(50, 1, 1, 0, 0)
(0, 3658)
"""
i_to_n = int(pow(current_number, power))
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum,
# then we have found a solution.
solutions_count += 1
return current_sum, solutions_count
elif current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum,
# then we can continue adding powers.
current_sum += i_to_n
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum,
# then we can try with the next power.
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
return current_sum, solutions_count


def solve(needed_sum: int, power: int) -> int:
"""
>>> solve(13, 2)
1
>>> solve(100, 2)
3
>>> solve(100, 3)
1
>>> solve(800, 2)
561
>>> solve(1000, 10)
0
>>> solve(400, 2)
55
>>> solve(50, 1)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
>>> solve(-10, 5)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
"""
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10."
)

_, count_ = backtrack(needed_sum, power, 1, 0, 0)
return count_


if __name__ == "__main__":
import doctest

doctest.testmod()