Skip to content

Add prove of injectivity to Data.Fin.combine #1679

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 24, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -808,6 +808,17 @@ Other minor changes
finTofun-funToFin : funToFin ∘ finToFun ≗ id
funTofin-funToFun : finToFun (funToFin f) ≗ f
^↔→ : Extensionality _ _ → Fin (n ^ m) ↔ (Fin m → Fin n)

toℕ-mono-< : i < j → toℕ i ℕ.< toℕ j
toℕ-mono-≤ : i ≤ j → toℕ i ℕ.≤ toℕ j
toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j → i ≤ j
toℕ-cancel-< : toℕ i ℕ.< toℕ j → i < j

toℕ-combine : toℕ (combine x y) ≡ k ℕ.* toℕ x ℕ.+ toℕ y
combine-injectiveˡ : combine x z ≡ combine y z → x ≡ y
combine-injectiveʳ : combine x y ≡ combine x z → y ≡ z
combine-injective : combine x y ≡ combine w z → x ≡ w × y ≡ z
combine-surjective : ∀ x → ∃₂ λ y z → combine y z ≡ x
```

* Added new functions in `Data.Integer.Base`:
Expand Down
101 changes: 97 additions & 4 deletions src/Data/Fin/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -19,16 +19,18 @@ open import Data.Fin.Base
open import Data.Fin.Patterns
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; s≤s; z≤n; _∸_; _^_)
import Data.Nat.Properties as ℕₚ
open import Data.Nat.Solver
open import Data.Unit using (⊤; tt)
open import Data.Product using (Σ-syntax; ∃; ∃₂; ∄; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>)
open import Data.Product.Properties using (,-injective)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′)
open import Data.Sum.Properties using ([,]-map-commute; [,]-∘-distr)
open import Function.Base using (_∘_; id; _$_; flip)
open import Function.Bundles using (_↣_; _⇔_; _↔_; mk⇔; mk↔′)
open import Function.Definitions.Core2 using (Surjective)
open import Relation.Binary as B hiding (Decidable; _⇔_)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; subst; _≗_; module ≡-Reasoning)
using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst; _≗_; module ≡-Reasoning)
open import Relation.Nullary.Decidable as Dec using (map′)
open import Relation.Nullary.Reflects
open import Relation.Nullary.Negation using (contradiction)
Expand Down Expand Up @@ -151,6 +153,22 @@ toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i)
toℕ≤pred[n]′ : ∀ {n} (i : Fin n) → toℕ i ℕ.≤ ℕ.pred n
toℕ≤pred[n]′ i = ℕₚ.<⇒≤pred (toℕ<n i)

toℕ-mono-< : ∀ {n} {i j : Fin n} → i < j → toℕ i ℕ.< toℕ j
toℕ-mono-< {i = 0F} {suc j} (s≤s z≤n) = s≤s z≤n
toℕ-mono-< {i = suc i} {suc (suc j)} (s≤s (s≤s i<j)) = s≤s (toℕ-mono-< (s≤s i<j))

toℕ-mono-≤ : ∀ {n} {i j : Fin n} → i ≤ j → toℕ i ℕ.≤ toℕ j
toℕ-mono-≤ {i = 0F} {j} z≤n = z≤n
toℕ-mono-≤ {i = suc i} {suc j} (s≤s i≤j) = s≤s (toℕ-mono-≤ i≤j)

toℕ-cancel-≤ : ∀ {n} {i j : Fin n} → toℕ i ℕ.≤ toℕ j → i ≤ j
toℕ-cancel-≤ {i = 0F} {j} z≤n = z≤n
toℕ-cancel-≤ {i = suc i} {suc j} (s≤s i≤j) = s≤s (toℕ-cancel-≤ i≤j)

toℕ-cancel-< : ∀ {n} {i j : Fin n} → toℕ i ℕ.< toℕ j → i < j
toℕ-cancel-< {i = 0F} {suc j} (s≤s z≤n) = s≤s z≤n
toℕ-cancel-< {i = suc i} {suc (suc j)} (s≤s (s≤s i<j)) = s≤s (toℕ-cancel-< (s≤s i<j))

------------------------------------------------------------------------
-- fromℕ
------------------------------------------------------------------------
Expand Down Expand Up @@ -552,9 +570,9 @@ splitAt-≥ (suc m) (suc i) (s≤s i≥m) = cong (Sum.map suc id) (splitAt-≥ m

-- Fin (m * n) ↔ Fin m × Fin n

remQuot-combine : ∀ {n k} (x : Fin n) y → remQuot k (combine x y) ≡ (x , y)
remQuot-combine {suc n} {k} 0F y rewrite splitAt-↑ˡ k y (n ℕ.* k) = refl
remQuot-combine {suc n} {k} (suc x) y rewrite splitAt-↑ʳ k (n ℕ.* k) (combine x y) = cong (Data.Product.map₁ suc) (remQuot-combine x y)
remQuot-combine : ∀ {n k} (i : Fin n) j → remQuot k (combine i j) ≡ (i , j)
remQuot-combine {suc n} {k} 0F j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl
remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k (n ℕ.* k) (combine i j) = cong (Data.Product.map₁ suc) (remQuot-combine i j)

combine-remQuot : ∀ {n} k (i : Fin (n ℕ.* k)) → uncurry combine (remQuot {n} k i) ≡ i
combine-remQuot {suc n} k i with splitAt k i | P.inspect (splitAt k) i
Expand All @@ -570,6 +588,81 @@ combine-remQuot {suc n} k i with splitAt k i | P.inspect (splitAt k) i
i ∎
where open ≡-Reasoning

toℕ-combine : ∀ {n m} (i : Fin n) (j : Fin m) → toℕ (combine i j) ≡ m ℕ.* toℕ i ℕ.+ toℕ j
toℕ-combine {n = suc n} {m} i@0F j = begin
toℕ (combine i j) ≡⟨⟩
toℕ (j ↑ˡ (n ℕ.* m)) ≡⟨ toℕ-↑ˡ j (n ℕ.* m) ⟩
toℕ j ≡⟨⟩
0 ℕ.+ toℕ j ≡˘⟨ cong (ℕ._+ toℕ j) (ℕₚ.*-zeroʳ m) ⟩
m ℕ.* toℕ i ℕ.+ toℕ j ∎
where open ≡-Reasoning
toℕ-combine {n = suc n} {m} (suc i) j = begin
toℕ (combine (suc i) j) ≡⟨⟩
toℕ (m ↑ʳ combine i j) ≡⟨ toℕ-↑ʳ m (combine i j) ⟩
m ℕ.+ toℕ (combine i j) ≡⟨ cong (m ℕ.+_) (toℕ-combine i j) ⟩
m ℕ.+ (m ℕ.* toℕ i ℕ.+ toℕ j) ≡⟨ solve 3 (λ m i j → m :+ (m :* i :+ j) := m :* (con 1 :+ i) :+ j) refl m (toℕ i) (toℕ j) ⟩
m ℕ.* toℕ (suc i) ℕ.+ toℕ j ∎
where
open ≡-Reasoning
open +-*-Solver

combine-injectiveˡ : ∀ {n m} (i j : Fin n) (k : Fin m) → combine i k ≡ combine j k → i ≡ j
combine-injectiveˡ {n} {m@(suc _)} i j k combine[i,k]≡combine[j,k] =
toℕ-injective (ℕₚ.*-cancelˡ-≡ m (ℕₚ.+-cancelʳ-≡ (m ℕ.* toℕ i) (m ℕ.* toℕ j) (begin
m ℕ.* toℕ i ℕ.+ toℕ k ≡˘⟨ toℕ-combine i k ⟩
toℕ (combine i k) ≡⟨ cong toℕ combine[i,k]≡combine[j,k] ⟩
toℕ (combine j k) ≡⟨ toℕ-combine j k ⟩
m ℕ.* toℕ j ℕ.+ toℕ k ∎)))
where open ≡-Reasoning

combine-injectiveʳ : ∀ {n m} (i : Fin n) (j k : Fin m) → combine i j ≡ combine i k → j ≡ k
combine-injectiveʳ {n} {m} i j k combine[i,k]≡combine[j,k] = toℕ-injective (ℕₚ.+-cancelˡ-≡ (m ℕ.* toℕ i) (begin
m ℕ.* toℕ i ℕ.+ toℕ j ≡˘⟨ toℕ-combine i j ⟩
toℕ (combine i j) ≡⟨ cong toℕ combine[i,k]≡combine[j,k] ⟩
toℕ (combine i k) ≡⟨ toℕ-combine i k ⟩
m ℕ.* toℕ i ℕ.+ toℕ k ∎))
where open ≡-Reasoning

combine-injective : ∀ {n m} (i : Fin n) (j : Fin m) (k : Fin n) (l : Fin m) → combine i j ≡ combine k l → i ≡ k × j ≡ l
combine-injective i j k l combine[i,j]≡combine[k,l] =
lemma₂ i j k l combine[i,j]≡combine[k,l] , lemma₃ i j k l combine[i,j]≡combine[k,l]
where
lemma₁ : ∀ {n m} (i : Fin n) (j : Fin m) (k : Fin n) (l : Fin m) → i < k → combine i j < combine k l
lemma₁ {n} {m} i j k l i<k = toℕ-cancel-< (begin-strict
toℕ (combine i j) ≡⟨ toℕ-combine i j ⟩
m ℕ.* toℕ i ℕ.+ toℕ j <⟨ ℕₚ.+-monoʳ-< (m ℕ.* toℕ i) (toℕ<n j) ⟩
m ℕ.* toℕ i ℕ.+ m ≡⟨ ℕₚ.+-comm _ m ⟩
m ℕ.+ m ℕ.* toℕ i ≡⟨ cong (m ℕ.+_) (ℕₚ.*-comm m _) ⟩
m ℕ.+ toℕ i ℕ.* m ≡⟨ ℕₚ.*-comm (suc (toℕ i)) m ⟩
m ℕ.* suc (toℕ i) ≤⟨ ℕₚ.*-monoʳ-≤ m (toℕ-mono-< i<k) ⟩
m ℕ.* toℕ k ≤⟨ ℕₚ.m≤m+n (m ℕ.* toℕ k) (toℕ l) ⟩
m ℕ.* toℕ k ℕ.+ toℕ l ≡˘⟨ toℕ-combine k l ⟩
toℕ (combine k l) ∎)
where
open ℕₚ.≤-Reasoning
open +-*-Solver

lemma₂ : ∀ {n m} (i : Fin n) (j : Fin m) (k : Fin n) (l : Fin m) → combine i j ≡ combine k l → i ≡ k
lemma₂ i j k l combine[i,j]≡combine[k,l] with <-cmp i k
... | tri< i<k _ _ = contradiction combine[i,j]≡combine[k,l] (<⇒≢ (lemma₁ i j k l i<k))
... | tri≈ _ i≡k _ = i≡k
... | tri> _ _ i>k = contradiction (sym combine[i,j]≡combine[k,l]) (<⇒≢ (lemma₁ k l i j i>k))

lemma₃ : ∀ {n m} (i : Fin n) (j : Fin m) (k : Fin n) (l : Fin m) → combine i j ≡ combine k l → j ≡ l
lemma₃ i j k l combine[i,j]≡combine[k,l] = combine-injectiveʳ i j l (begin
combine i j ≡⟨ combine[i,j]≡combine[k,l] ⟩
combine k l ≡˘⟨ cong (λ h → combine h l) (lemma₂ i j k l combine[i,j]≡combine[k,l]) ⟩
combine i l ∎)
where open ≡-Reasoning

combine-surjective : ∀ {n m} (i : Fin (n ℕ.* m)) → Σ[ j ∈ Fin n ] Σ[ k ∈ Fin m ] combine j k ≡ i
combine-surjective {n} {m} i with remQuot {n} m i | P.inspect (remQuot {n} m) i
... | j , k | P.[ eq ] = j , k , (begin
combine j k ≡˘⟨ uncurry (cong₂ combine) (,-injective eq) ⟩
uncurry combine (remQuot {n} m i) ≡⟨ combine-remQuot {n} m i ⟩
i ∎)
where open ≡-Reasoning

------------------------------------------------------------------------
-- Bundles

Expand Down