Skip to content

[ fix #392] Added cancellative and conical properties for _++_ #650

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 20, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -483,6 +483,10 @@ Other minor additions

* Added new types to `Algebra.FunctionProperties`:
```agda
LeftConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → x ≈ e
RightConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → y ≈ e
Conical e ∙ = LeftConical e ∙ × RightConical e ∙

LeftCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_
RightCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_
```
Expand Down Expand Up @@ -773,15 +777,21 @@ Other minor additions

* Added new proofs to `Data.List.Properties`:
```agda
≡-dec : Decidable _≡_ → Decidable {A = List A} _≡_
≡-dec : Decidable _≡_ → Decidable {A = List A} _≡_

++-isMagma : IsMagma _++_
++-cancelˡ : xs ++ ys ≡ xs ++ zs → ys ≡ zs
++-cancelʳ : ys ++ xs ≡ zs ++ xs → ys ≡ zs
++-cancel : Cancellative _++_
++-conicalˡ : xs ++ ys ≡ [] → xs ≡ []
++-conicalʳ : xs ++ ys ≡ [] → ys ≡ []
++-conical : Conical [] _++_
++-isMagma : IsMagma _++_

length-%= : length (xs [ k ]%= f) ≡ length xs
length-∷= : length (xs [ k ]∷= v) ≡ length xs
map-∷= : map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v
length-─ : length (xs ─ k) ≡ pred (length xs)
map-─ : map f (xs ─ k) ≡ map f xs ─ cast eq k
length-%= : length (xs [ k ]%= f) ≡ length xs
length-∷= : length (xs [ k ]∷= v) ≡ length xs
map-∷= : map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v
length-─ : length (xs ─ k) ≡ pred (length xs)
map-─ : map f (xs ─ k) ≡ map f xs ─ cast eq k

length-applyUpTo : length (applyUpTo f n) ≡ n
length-applyDownFrom : length (applyDownFrom f n) ≡ n
Expand Down Expand Up @@ -893,6 +903,7 @@ Other minor additions
m⊔n<o⇒n<o : ∀ m n {o} → m ⊔ n < o → n < o

m≢0⇒suc[pred[m]]≡m : m ≢ 0 → suc (pred m) ≡ m
m≢1+n+m : m ≢ suc (n + m)

≡ᵇ⇒≡ : T (m ≡ᵇ n) → m ≡ n
≡⇒≡ᵇ : m ≡ n → T (m ≡ᵇ n)
Expand Down
17 changes: 13 additions & 4 deletions src/Algebra/FunctionProperties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ RightIdentity : A → Op₂ A → Set _
RightIdentity e _∙_ = ∀ x → (x ∙ e) ≈ x

Identity : A → Op₂ A → Set _
Identity e ∙ = LeftIdentity e ∙ × RightIdentity e ∙
Identity e ∙ = (LeftIdentity e ∙) × (RightIdentity e ∙)

LeftZero : A → Op₂ A → Set _
LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z
Expand All @@ -47,7 +47,7 @@ RightZero : A → Op₂ A → Set _
RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z

Zero : A → Op₂ A → Set _
Zero z ∙ = LeftZero z ∙ × RightZero z ∙
Zero z ∙ = (LeftZero z ∙) × (RightZero z ∙)

LeftInverse : A → Op₁ A → Op₂ A → Set _
LeftInverse e _⁻¹ _∙_ = ∀ x → ((x ⁻¹) ∙ x) ≈ e
Expand All @@ -56,7 +56,16 @@ RightInverse : A → Op₁ A → Op₂ A → Set _
RightInverse e _⁻¹ _∙_ = ∀ x → (x ∙ (x ⁻¹)) ≈ e

Inverse : A → Op₁ A → Op₂ A → Set _
Inverse e ⁻¹ ∙ = LeftInverse e ⁻¹ ∙ × RightInverse e ⁻¹ ∙
Inverse e ⁻¹ ∙ = (LeftInverse e ⁻¹) ∙ × (RightInverse e ⁻¹ ∙)

LeftConical : A → Op₂ A → Set _
LeftConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → x ≈ e

RightConical : A → Op₂ A → Set _
RightConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → y ≈ e

Conical : A → Op₂ A → Set _
Conical e ∙ = (LeftConical e ∙) × (RightConical e ∙)

_DistributesOverˡ_ : Op₂ A → Op₂ A → Set _
_*_ DistributesOverˡ _+_ =
Expand Down Expand Up @@ -97,7 +106,7 @@ RightCancellative : Op₂ A → Set _
RightCancellative _•_ = ∀ {x} y z → (y • x) ≈ (z • x) → y ≈ z

Cancellative : Op₂ A → Set _
Cancellative _•_ = LeftCancellative _•_ × RightCancellative _•_
Cancellative _•_ = (LeftCancellative _•_) × (RightCancellative _•_)

Congruent₁ : Op₁ A → Set _
Congruent₁ f = f Preserves _≈_ ⟶ _≈_
Expand Down
49 changes: 40 additions & 9 deletions src/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ module Data.List.Properties where

open import Algebra
import Algebra.Structures as Structures
open import Algebra.FunctionProperties
import Algebra.FunctionProperties as FunctionProperties
open import Data.Bool.Base using (Bool; false; true; not; if_then_else_)
open import Data.Fin using (Fin; zero; suc; cast; toℕ)
open import Data.List as List
Expand Down Expand Up @@ -132,18 +132,24 @@ module _ {a b} {A : Set a} {B : Set b} (f : A → Maybe B) where

module _ {a} {A : Set a} where

++-assoc : Associative {A = List A} _≡_ _++_
length-++ : ∀ (xs : List A) {ys} → length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = P.cong suc (length-++ xs)

open FunctionProperties {A = List A} _≡_

++-assoc : Associative _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = P.cong (x ∷_) (++-assoc xs ys zs)

++-identityˡ : LeftIdentity {A = List A} _≡_ [] _++_
++-identityˡ : LeftIdentity [] _++_
++-identityˡ xs = refl

++-identityʳ : RightIdentity {A = List A} _≡_ [] _++_
++-identityʳ : RightIdentity [] _++_
++-identityʳ [] = refl
++-identityʳ (x ∷ xs) = P.cong (x ∷_) (++-identityʳ xs)

++-identity : Identity {A = List A} _≡_ [] _++_
++-identity : Identity [] _++_
++-identity = ++-identityˡ , ++-identityʳ

++-identityʳ-unique : ∀ (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ []
Expand All @@ -163,9 +169,32 @@ module _ {a} {A : Set a} where
++-identityˡ-unique {xs = x ∷ xs} (y ∷ [] ) eq | ()
++-identityˡ-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | ()

length-++ : ∀ (xs : List A) {ys} → length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = P.cong suc (length-++ xs)
++-cancelˡ : ∀ xs {ys zs : List A} → xs ++ ys ≡ xs ++ zs → ys ≡ zs
++-cancelˡ [] ys≡zs = ys≡zs
++-cancelˡ (x ∷ xs) x∷xs++ys≡x∷xs++zs = ++-cancelˡ xs (∷-injectiveʳ x∷xs++ys≡x∷xs++zs)

++-cancelʳ : ∀ {xs} ys zs → ys ++ xs ≡ zs ++ xs → ys ≡ zs
++-cancelʳ [] [] _ = refl
++-cancelʳ {xs} [] (z ∷ zs) eq =
contradiction (P.trans (cong length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs))
++-cancelʳ {xs} (y ∷ ys) [] eq =
contradiction (P.trans (P.sym (length-++ (y ∷ ys))) (cong length eq)) (m≢1+n+m (length xs) ∘ sym)
++-cancelʳ (y ∷ ys) (z ∷ zs) eq =
P.cong₂ _∷_ (∷-injectiveˡ eq) (++-cancelʳ ys zs (∷-injectiveʳ eq))

++-cancel : Cancellative _++_
++-cancel = ++-cancelˡ , ++-cancelʳ

++-conicalˡ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → xs ≡ []
++-conicalˡ [] _ refl = refl
++-conicalˡ (x ∷ xs) _ ()

++-conicalʳ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → ys ≡ []
++-conicalʳ [] _ refl = refl
++-conicalʳ (x ∷ xs) _ ()

++-conical : Conical [] _++_
++-conical = ++-conicalˡ , ++-conicalʳ

module _ {a} {A : Set a} where

Expand Down Expand Up @@ -764,6 +793,8 @@ module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where

module _ {a} {A : Set a} where

open FunctionProperties {A = List A} _≡_

unfold-reverse : ∀ (x : A) xs → reverse (x ∷ xs) ≡ reverse xs ∷ʳ x
unfold-reverse x xs = helper [ x ] xs
where
Expand All @@ -787,7 +818,7 @@ module _ {a} {A : Set a} where
reverse ys ++ reverse (x ∷ xs) ∎
where open P.≡-Reasoning

reverse-involutive : Involutive {A = List A} _≡_ reverse
reverse-involutive : Involutive reverse
reverse-involutive [] = refl
reverse-involutive (x ∷ xs) = begin
reverse (reverse (x ∷ xs)) ≡⟨ P.cong reverse $ unfold-reverse x xs ⟩
Expand Down
3 changes: 3 additions & 0 deletions src/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -461,6 +461,9 @@ m≢1+m+n : ∀ m {n} → m ≢ suc (m + n)
m≢1+m+n zero ()
m≢1+m+n (suc m) eq = m≢1+m+n m (cong pred eq)

m≢1+n+m : ∀ m {n} → m ≢ suc (n + m)
m≢1+n+m m m≡1+n+m = m≢1+m+n m (trans m≡1+n+m (cong suc (+-comm _ m)))

i+1+j≢i : ∀ i {j} → i + suc j ≢ i
i+1+j≢i zero ()
i+1+j≢i (suc i) = (i+1+j≢i i) ∘ suc-injective
Expand Down