Skip to content

Update generated code for DPF 261_daily on main #2538

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
444 changes: 280 additions & 164 deletions doc/source/_static/dpf_operators.html

Large diffs are not rendered by default.

2 changes: 2 additions & 0 deletions src/ansys/dpf/core/operators/compression/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
from .apply_svd import apply_svd
from .apply_zfp import apply_zfp
from .kmeans_clustering import kmeans_clustering
from .quantization import quantization
from .quantization_fc import quantization_fc
from .zfp_decompress import zfp_decompress
242 changes: 242 additions & 0 deletions src/ansys/dpf/core/operators/compression/quantization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
"""
quantization

Autogenerated DPF operator classes.
"""

from __future__ import annotations

from warnings import warn
from ansys.dpf.core.dpf_operator import Operator
from ansys.dpf.core.inputs import Input, _Inputs
from ansys.dpf.core.outputs import Output, _Outputs
from ansys.dpf.core.operators.specification import PinSpecification, Specification
from ansys.dpf.core.config import Config
from ansys.dpf.core.server_types import AnyServerType


class quantization(Operator):
r"""Applies scaling to precision to all the values from field input, then
rounding to the unit.


Parameters
----------
input_field: Field
Input field
threshold: float
Threshold (precision) desired.

Returns
-------
output_field: Field
Scaled and rounded field

Examples
--------
>>> from ansys.dpf import core as dpf

>>> # Instantiate operator
>>> op = dpf.operators.compression.quantization()

>>> # Make input connections
>>> my_input_field = dpf.Field()
>>> op.inputs.input_field.connect(my_input_field)
>>> my_threshold = float()
>>> op.inputs.threshold.connect(my_threshold)

>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.compression.quantization(
... input_field=my_input_field,
... threshold=my_threshold,
... )

>>> # Get output data
>>> result_output_field = op.outputs.output_field()
"""

def __init__(self, input_field=None, threshold=None, config=None, server=None):
super().__init__(name="quantization", config=config, server=server)
self._inputs = InputsQuantization(self)
self._outputs = OutputsQuantization(self)
if input_field is not None:
self.inputs.input_field.connect(input_field)
if threshold is not None:
self.inputs.threshold.connect(threshold)

@staticmethod
def _spec() -> Specification:
description = r"""Applies scaling to precision to all the values from field input, then
rounding to the unit.
"""
spec = Specification(
description=description,
map_input_pin_spec={
0: PinSpecification(
name="input_field",
type_names=["field"],
optional=False,
document=r"""Input field""",
),
1: PinSpecification(
name="threshold",
type_names=["double"],
optional=False,
document=r"""Threshold (precision) desired.""",
),
},
map_output_pin_spec={
0: PinSpecification(
name="output_field",
type_names=["field"],
optional=False,
document=r"""Scaled and rounded field""",
),
},
)
return spec

@staticmethod
def default_config(server: AnyServerType = None) -> Config:
"""Returns the default config of the operator.

This config can then be changed to the user needs and be used to
instantiate the operator. The Configuration allows to customize
how the operation will be processed by the operator.

Parameters
----------
server:
Server with channel connected to the remote or local instance. When
``None``, attempts to use the global server.

Returns
-------
config:
A new Config instance equivalent to the default config for this operator.
"""
return Operator.default_config(name="quantization", server=server)

@property
def inputs(self) -> InputsQuantization:
"""Enables to connect inputs to the operator

Returns
--------
inputs:
An instance of InputsQuantization.
"""
return super().inputs

@property
def outputs(self) -> OutputsQuantization:
"""Enables to get outputs of the operator by evaluating it

Returns
--------
outputs:
An instance of OutputsQuantization.
"""
return super().outputs


class InputsQuantization(_Inputs):
"""Intermediate class used to connect user inputs to
quantization operator.

Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.compression.quantization()
>>> my_input_field = dpf.Field()
>>> op.inputs.input_field.connect(my_input_field)
>>> my_threshold = float()
>>> op.inputs.threshold.connect(my_threshold)
"""

def __init__(self, op: Operator):
super().__init__(quantization._spec().inputs, op)
self._input_field = Input(quantization._spec().input_pin(0), 0, op, -1)
self._inputs.append(self._input_field)
self._threshold = Input(quantization._spec().input_pin(1), 1, op, -1)
self._inputs.append(self._threshold)

@property
def input_field(self) -> Input:
r"""Allows to connect input_field input to the operator.

Input field

Returns
-------
input:
An Input instance for this pin.

Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.compression.quantization()
>>> op.inputs.input_field.connect(my_input_field)
>>> # or
>>> op.inputs.input_field(my_input_field)
"""
return self._input_field

@property
def threshold(self) -> Input:
r"""Allows to connect threshold input to the operator.

Threshold (precision) desired.

Returns
-------
input:
An Input instance for this pin.

Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.compression.quantization()
>>> op.inputs.threshold.connect(my_threshold)
>>> # or
>>> op.inputs.threshold(my_threshold)
"""
return self._threshold


class OutputsQuantization(_Outputs):
"""Intermediate class used to get outputs from
quantization operator.

Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.compression.quantization()
>>> # Connect inputs : op.inputs. ...
>>> result_output_field = op.outputs.output_field()
"""

def __init__(self, op: Operator):
super().__init__(quantization._spec().outputs, op)
self._output_field = Output(quantization._spec().output_pin(0), 0, op)
self._outputs.append(self._output_field)

@property
def output_field(self) -> Output:
r"""Allows to get output_field output of the operator

Scaled and rounded field

Returns
-------
output:
An Output instance for this pin.

Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.compression.quantization()
>>> # Get the output from op.outputs. ...
>>> result_output_field = op.outputs.output_field()
"""
return self._output_field
Loading
Loading