Skip to content

Add to_date function #9019

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions datafusion-examples/examples/to_date.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use datafusion::arrow::array::StringArray;
use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::error::Result;
use datafusion::prelude::*;

/// This example demonstrates how to use the to_date series
/// of functions in the DataFrame API as well as via sql.
#[tokio::main]
async fn main() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Utf8, false)]));

// define data.
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from(vec![
"2020-09-08T13:42:29Z",
"2020-09-08T13:42:29.190855-05:00",
"2020-08-09 12:13:29",
"2020-01-02",
]))],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;

// use to_date function to convert col 'a' to timestamp type using the default parsing
let df = df.with_column("a", to_date(vec![col("a")]))?;

let df = df.select_columns(&["a"])?;

// print the results
df.show().await?;

Ok(())
}
8 changes: 7 additions & 1 deletion datafusion/common/src/scalar/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ use arrow::{
compute::kernels::cast::{cast_with_options, CastOptions},
datatypes::{
i256, ArrowDictionaryKeyType, ArrowNativeType, ArrowTimestampType, DataType,
Field, Float32Type, Int16Type, Int32Type, Int64Type, Int8Type,
Date32Type, Field, Float32Type, Int16Type, Int32Type, Int64Type, Int8Type,
IntervalDayTimeType, IntervalMonthDayNanoType, IntervalUnit,
IntervalYearMonthType, TimeUnit, TimestampMicrosecondType,
TimestampMillisecondType, TimestampNanosecondType, TimestampSecondType,
Expand Down Expand Up @@ -3317,6 +3317,12 @@ impl ScalarType<i64> for TimestampNanosecondType {
}
}

impl ScalarType<i32> for Date32Type {
fn scalar(r: Option<i32>) -> ScalarValue {
ScalarValue::Date32(r)
}
}

#[cfg(test)]
mod tests {
use std::cmp::Ordering;
Expand Down
6 changes: 6 additions & 0 deletions datafusion/expr/src/built_in_function.rs
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,8 @@ pub enum BuiltinScalarFunction {
ToTimestampSeconds,
/// from_unixtime
FromUnixtime,
/// to_date
ToDate,
///now
Now,
///current_date
Expand Down Expand Up @@ -472,6 +474,7 @@ impl BuiltinScalarFunction {
BuiltinScalarFunction::Upper => Volatility::Immutable,
BuiltinScalarFunction::Struct => Volatility::Immutable,
BuiltinScalarFunction::FromUnixtime => Volatility::Immutable,
BuiltinScalarFunction::ToDate => Volatility::Immutable,
BuiltinScalarFunction::ArrowTypeof => Volatility::Immutable,
BuiltinScalarFunction::OverLay => Volatility::Immutable,
BuiltinScalarFunction::Levenshtein => Volatility::Immutable,
Expand Down Expand Up @@ -781,6 +784,7 @@ impl BuiltinScalarFunction {
BuiltinScalarFunction::ToTimestampMicros => Ok(Timestamp(Microsecond, None)),
BuiltinScalarFunction::ToTimestampSeconds => Ok(Timestamp(Second, None)),
BuiltinScalarFunction::FromUnixtime => Ok(Timestamp(Second, None)),
BuiltinScalarFunction::ToDate => Ok(Date32),
BuiltinScalarFunction::Now => {
Ok(Timestamp(Nanosecond, Some("+00:00".into())))
}
Expand Down Expand Up @@ -1058,6 +1062,7 @@ impl BuiltinScalarFunction {
BuiltinScalarFunction::FromUnixtime => {
Signature::uniform(1, vec![Int64], self.volatility())
}
BuiltinScalarFunction::ToDate => Signature::variadic_any(self.volatility()),
BuiltinScalarFunction::Digest => Signature::one_of(
vec![
Exact(vec![Utf8, Utf8]),
Expand Down Expand Up @@ -1490,6 +1495,7 @@ impl BuiltinScalarFunction {
BuiltinScalarFunction::ToTimestampSeconds => &["to_timestamp_seconds"],
BuiltinScalarFunction::ToTimestampNanos => &["to_timestamp_nanos"],
BuiltinScalarFunction::FromUnixtime => &["from_unixtime"],
BuiltinScalarFunction::ToDate => &["to_date"],

// hashing functions
BuiltinScalarFunction::Digest => &["digest"],
Expand Down
5 changes: 5 additions & 0 deletions datafusion/expr/src/expr_fn.rs
Original file line number Diff line number Diff line change
Expand Up @@ -881,6 +881,11 @@ scalar_expr!(
datetime format,
"converts a date, time, timestamp or duration to a string based on the provided format"
);
nary_scalar_expr!(
ToDate,
to_date,
"converts string to date according to the given format"
);
nary_scalar_expr!(
ToTimestamp,
to_timestamp,
Expand Down
111 changes: 110 additions & 1 deletion datafusion/physical-expr/src/datetime_expressions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,8 @@ use datafusion_common::cast::{
as_timestamp_nanosecond_array, as_timestamp_second_array,
};
use datafusion_common::{
exec_err, not_impl_err, DataFusionError, Result, ScalarType, ScalarValue,
exec_err, internal_datafusion_err, not_impl_err, DataFusionError, Result, ScalarType,
ScalarValue,
};
use datafusion_expr::ColumnarValue;

Expand Down Expand Up @@ -424,6 +425,84 @@ fn to_timestamp_impl<T: ArrowTimestampType + ScalarType<i64>>(
}
}

/// # Examples
///
/// ```ignore
/// # use std::sync::Arc;

/// # use datafusion::arrow::array::StringArray;
/// # use datafusion::arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion::arrow::record_batch::RecordBatch;
/// # use datafusion::error::Result;
/// # use datafusion::prelude::*;

/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// // define a schema.
/// let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Utf8, false)]));

/// // define data.
/// let batch = RecordBatch::try_new(
/// schema,
/// vec![Arc::new(StringArray::from(vec![
/// "2020-09-08T13:42:29Z",
/// "2020-09-08T13:42:29.190855-05:00",
/// "2020-08-09 12:13:29",
/// "2020-01-02",
/// ]))],
/// )?;

/// // declare a new context. In spark API, this corresponds to a new spark SQLsession
/// let ctx = SessionContext::new();

/// // declare a table in memory. In spark API, this corresponds to createDataFrame(...).
/// ctx.register_batch("t", batch)?;
/// let df = ctx.table("t").await?;

/// // use to_date function to convert col 'a' to timestamp type using the default parsing
/// let df = df.with_column("a", to_date(vec![col("a")]))?;

/// let df = df.select_columns(&["a"])?;

/// // print the results
/// df.show().await?;

/// # Ok(())
/// # }
/// ```
pub fn to_date(args: &[ColumnarValue]) -> Result<ColumnarValue> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we add some rustdoc with a dataframe based example to this? See this as an example

match args.len() {
1 => handle::<Date32Type, _, Date32Type>(
args,
|s| {
string_to_timestamp_nanos_shim(s)
.map(|n| n / (1_000_000 * 24 * 60 * 60 * 1_000))
.and_then(|v| {
v.try_into().map_err(|_| {
internal_datafusion_err!("Unable to cast to Date32 for converting from i64 to i32 failed")
})
})
},
"to_date",
),
n if n >= 2 => handle_multiple::<Date32Type, _, Date32Type, _>(
args,
|s, format| {
string_to_timestamp_nanos_formatted(s, format)
.map(|n| n / (1_000_000 * 24 * 60 * 60 * 1_000))
.and_then(|v| {
v.try_into().map_err(|_| {
internal_datafusion_err!("Unable to cast to Date32 for converting from i64 to i32 failed")
})
})
},
|n| n,
"to_date",
),
_ => exec_err!("Unsupported 0 argument count for function to_date"),
}
}

/// to_timestamp SQL function
///
/// Note: `to_timestamp` returns `Timestamp(Nanosecond)` though its arguments are interpreted as **seconds**.
Expand Down Expand Up @@ -1567,6 +1646,36 @@ fn validate_to_timestamp_data_types(
None
}

/// to_date SQL function implementation
pub fn to_date_invoke(args: &[ColumnarValue]) -> Result<ColumnarValue> {
if args.is_empty() {
return exec_err!(
"to_date function requires 1 or more arguments, got {}",
args.len()
);
}

// validate that any args after the first one are Utf8
if args.len() > 1 {
if let Some(value) = validate_to_timestamp_data_types(args, "to_date") {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the validate method should likely be renamed as it won't be used just for timestamps now

return value;
}
}

match args[0].data_type() {
DataType::Int32
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It looks like your code takes several input types -- can you please add tests that show calling to_date with these types (eg select to_date(arrow_cast(123, 'Int64')))

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

| DataType::Int64
| DataType::Null
| DataType::Float64
| DataType::Date32
| DataType::Date64 => cast_column(&args[0], &DataType::Date32, None),
DataType::Utf8 => to_date(args),
other => {
exec_err!("Unsupported data type {:?} for function to_date", other)
}
}
}

/// to_timestamp() SQL function implementation
pub fn to_timestamp_invoke(args: &[ColumnarValue]) -> Result<ColumnarValue> {
if args.is_empty() {
Expand Down
1 change: 1 addition & 0 deletions datafusion/physical-expr/src/functions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -523,6 +523,7 @@ pub fn create_physical_fun(
BuiltinScalarFunction::FromUnixtime => {
Arc::new(datetime_expressions::from_unixtime_invoke)
}
BuiltinScalarFunction::ToDate => Arc::new(datetime_expressions::to_date_invoke),
BuiltinScalarFunction::InitCap => Arc::new(|args| match args[0].data_type() {
DataType::Utf8 => {
make_scalar_function_inner(string_expressions::initcap::<i32>)(args)
Expand Down
2 changes: 2 additions & 0 deletions datafusion/proto/proto/datafusion.proto
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
/*

* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
Expand Down Expand Up @@ -682,6 +683,7 @@ enum ScalarFunction {
ArrayReverse = 134;
RegexpLike = 135;
ToChar = 136;
ToDate = 137;
}

message ScalarFunctionNode {
Expand Down
3 changes: 3 additions & 0 deletions datafusion/proto/src/generated/pbjson.rs

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

3 changes: 3 additions & 0 deletions datafusion/proto/src/generated/prost.rs

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

11 changes: 11 additions & 0 deletions datafusion/proto/src/logical_plan/from_proto.rs
Original file line number Diff line number Diff line change
Expand Up @@ -570,6 +570,7 @@ impl From<&protobuf::ScalarFunction> for BuiltinScalarFunction {
ScalarFunction::Levenshtein => Self::Levenshtein,
ScalarFunction::SubstrIndex => Self::SubstrIndex,
ScalarFunction::FindInSet => Self::FindInSet,
ScalarFunction::ToDate => Self::ToDate,
}
}
}
Expand Down Expand Up @@ -1810,6 +1811,16 @@ pub fn parse_expr(
ScalarFunction::StructFun => {
Ok(struct_fun(parse_expr(&args[0], registry)?))
}
ScalarFunction::ToDate => {
let args: Vec<_> = args
.iter()
.map(|expr| parse_expr(expr, registry))
.collect::<std::result::Result<_, _>>()?;
Ok(Expr::ScalarFunction(expr::ScalarFunction::new(
BuiltinScalarFunction::ToDate,
args,
)))
}
}
}
ExprType::ScalarUdfExpr(protobuf::ScalarUdfExprNode { fun_name, args }) => {
Expand Down
1 change: 1 addition & 0 deletions datafusion/proto/src/logical_plan/to_proto.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1549,6 +1549,7 @@ impl TryFrom<&BuiltinScalarFunction> for protobuf::ScalarFunction {
BuiltinScalarFunction::Levenshtein => Self::Levenshtein,
BuiltinScalarFunction::SubstrIndex => Self::SubstrIndex,
BuiltinScalarFunction::FindInSet => Self::FindInSet,
BuiltinScalarFunction::ToDate => Self::ToDate,
};

Ok(scalar_function)
Expand Down
Loading