-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug
Description
Hi all, The pass RemoveUnusedOutputs
seems to give an unexpected optimized result. Due to the lack of detailed documentation about this API (e.g., relax.transform.RemoveUnusedOutputs
), I cannot confirm if the optimization result is wrong.
In addition, another bug is about the API tvm.ir.assert_structural_equal
, for the totally same mod, this API judge the structure of them as unequal. It was triggered by IRs with the string "nan".
Actual behavior
## Output IRs after the RemoveUnusedOutputs
@I.ir_module
class Module:
@R.function
def main(v0_0: R.Tensor((1,), dtype="int32"), v1_0: R.Tensor((42,), dtype="int32")) -> R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))):
R.func_attr({"num_input": 2})
with R.dataflow():
res: R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))) = R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan"))
R.output(res)
return res
----------------------------------------------------------------------------------------------------------------------------------
Traceback (most recent call last):
File "/share_container/optfuzz/res/bugs/assert_structure.py", line 66, in <module>
tvm.ir.assert_structural_equal(mod, mod)
File "/software/tvm-lunder/python/tvm/ir/base.py", line 256, in assert_structural_equal
_ffi_node_api.StructuralEqual(lhs, rhs, True, map_free_vars) # type: ignore # pylint: disable=no-member
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/software/tvm-lunder/python/tvm/_ffi/_ctypes/packed_func.py", line 240, in __call__
raise_last_ffi_error()
File "/software/tvm-lunder/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
raise py_err
ValueError: Traceback (most recent call last):
5: _ZN3tvm7runtime13PackedFuncObj
4: tvm::runtime::TypedPackedFunc<bool (tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, bool, bool)>::AssignTypedLambda<tvm::{lambda(tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, bool, bool)#3}>(tvm::{lambda(tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, bool, bool)#3}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
3: tvm::SEqualHandlerDefault::Impl::Equal(tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, bool)
2: tvm::SEqualHandlerDefault::Impl::RunTasks()
1: tvm::SEqualHandlerDefault::DispatchSEqualReduce(tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, bool, tvm::runtime::Optional<tvm::ObjectPathPair> const&)
0: tvm::SEqualHandlerDefault::Impl::CheckResult(bool, tvm::runtime::ObjectRef const&, tvm::runtime::ObjectRef const&, tvm::runtime::Optional<tvm::ObjectPathPair> const&)
File "/software/tvm-lunder/src/node/structural_equal.cc", line 392
ValueError: StructuralEqual check failed, caused by lhs at <root>.functions[I.GlobalVar("main")].body.blocks[0].bindings[0].value.fields[0].value.value:
# from tvm.script import ir as I
# from tvm.script import tir as T
# from tvm.script import relax as R
@I.ir_module
class Module:
@R.function
def main(v0_0: R.Tensor((1,), dtype="int32"), v1_0: R.Tensor((42,), dtype="int32")) -> R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))):
R.func_attr({"num_input": 2})
with R.dataflow():
res: R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))) = R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan"))
^^^^^
R.output(res)
return res
and rhs at <root>.functions[I.GlobalVar("main")].body.blocks[0].bindings[0].value.fields[0].value.value:
# from tvm.script import ir as I
# from tvm.script import tir as T
# from tvm.script import relax as R
@I.ir_module
class Module:
@R.function
def main(v0_0: R.Tensor((1,), dtype="int32"), v1_0: R.Tensor((42,), dtype="int32")) -> R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))):
R.func_attr({"num_input": 2})
with R.dataflow():
res: R.Tuple(R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan")), R.Prim(value=T.float64("nan"))) = R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan")), R.prim_value(T.float64("nan"))
^^^^^
R.output(res)
return res
Steps to reproduce
import tvm
from tvm import relax
from tvm.script import ir as I
from tvm.script import tir as T
from tvm.script import relax as R
@I.ir_module
class Module:
@T.prim_func(private=True)
def ones(T_full: T.Buffer((T.int64(16), T.int64(16)), "int32")):
T.func_attr({"tir.noalias": T.bool(True)})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(16), T.int64(16)):
with T.block("T_full"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads()
T.writes(T_full[v_ax0, v_ax1])
T_full[v_ax0, v_ax1] = 1
@T.prim_func(private=True)
def zeros(T_full: T.Buffer((T.int64(16), T.int64(16)), "int32")):
T.func_attr({"tir.noalias": T.bool(True)})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(16), T.int64(16)):
with T.block("T_full"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads()
T.writes(T_full[v_ax0, v_ax1])
T_full[v_ax0, v_ax1] = 0
@T.prim_func(private=True)
def zeros1(T_full: T.Buffer((T.int64(32), T.int64(32)), "int32")):
T.func_attr({"tir.noalias": T.bool(True)})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(32), T.int64(32)):
with T.block("T_full"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads()
T.writes(T_full[v_ax0, v_ax1])
T_full[v_ax0, v_ax1] = 0
@R.function(private=True)
def func() -> R.Tuple(R.Tensor((16, 16), dtype="int32"), R.Tensor((16, 16), dtype="int32"), R.Tensor((32, 32), dtype="int32")):
cls = Module
A = R.call_tir(cls.zeros, R.tuple(), out_sinfo=R.Tensor((16, 16), dtype="int32"))
B = R.call_tir(cls.ones, R.tuple(), out_sinfo=R.Tensor((16, 16), dtype="int32"))
C = R.call_tir(cls.zeros1, R.tuple(), out_sinfo=R.Tensor((32, 32), dtype="int32"))
return (A, B, C)
@R.function
def main(v0_0: R.Tensor((1,), dtype="int32"), v1_0: R.Tensor((42,), dtype="int32")) -> R.Tuple(R.Tensor((16, 16), dtype="int32"), R.Tensor((16, 16), dtype="int32"), R.Tensor((32, 32), dtype="int32")):
R.func_attr({"num_input": 2})
cls = Module
with R.dataflow():
res: R.Tuple(R.Tensor((16, 16), dtype="int32"), R.Tensor((16, 16), dtype="int32"), R.Tensor((32, 32), dtype="int32")) = cls.func()
R.output(res)
return res
mod = Module
mod.show()
mod = relax.transform.RemoveUnusedOutputs()(mod)
mod.show() # is this irs correct?
tvm.ir.assert_structural_equal(mod, mod) # not equal! why?
Metadata
Metadata
Assignees
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug