Skip to content

Added logistic regression example #203

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Sep 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 64 additions & 0 deletions examples/common/idxio.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2019, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

def reverse_char(b):
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4
b = (b & 0xCC) >> 2 | (b & 0x33) << 2
b = (b & 0xAA) >> 1 | (b & 0x55) << 1
return b


# http://stackoverflow.com/a/9144870/2192361
def reverse(x):
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1)
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2)
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4)
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8)
x = ((x >> 16) & 0xffff) | ((x & 0xffff) << 16);
return x


def read_idx(name):
with open(name, 'rb') as f:
# In the C++ version, bytes the size of 4 chars are being read
# May not work properly in machines where a char is not 1 byte
bytes_read = f.read(4)
bytes_read = bytearray(bytes_read)

if bytes_read[2] != 8:
raise RuntimeError('Unsupported data type')

numdims = bytes_read[3]
elemsize = 1

# Read the dimensions
elem = 1
dims = [0] * numdims
for i in range(numdims):
bytes_read = bytearray(f.read(4))

# Big endian to little endian
for j in range(4):
bytes_read[j] = reverse_char(bytes_read[j])
bytes_read_int = int.from_bytes(bytes_read, 'little')
dim = reverse(bytes_read_int)

elem = elem * dim;
dims[i] = dim;

# Read the data
cdata = f.read(elem * elemsize)
cdata = list(cdata)
data = [float(cdata_elem) for cdata_elem in cdata]

return (dims, data)


205 changes: 205 additions & 0 deletions examples/machine_learning/logistic_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2019, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

from mnist_common import display_results, setup_mnist

import sys
import time

import arrayfire as af
from arrayfire.algorithm import max, imax, count, sum
from arrayfire.arith import abs, sigmoid, log
from arrayfire.array import transpose
from arrayfire.blas import matmul, matmulTN
from arrayfire.data import constant, join, lookup, moddims
from arrayfire.device import set_device, sync, eval


def accuracy(predicted, target):
_, tlabels = af.imax(target, 1)
_, plabels = af.imax(predicted, 1)
return 100 * af.count(plabels == tlabels) / tlabels.elements()


def abserr(predicted, target):
return 100 * af.sum(af.abs(predicted - target)) / predicted.elements()


# Predict (probability) based on given parameters
def predict_prob(X, Weights):
Z = af.matmul(X, Weights)
return af.sigmoid(Z)


# Predict (log probability) based on given parameters
def predict_log_prob(X, Weights):
return af.log(predict_prob(X, Weights))


# Give most likely class based on given parameters
def predict_class(X, Weights):
probs = predict_prob(X, Weights)
_, classes = af.imax(probs, 1)
return classes


def cost(Weights, X, Y, lambda_param=1.0):
# Number of samples
m = Y.dims()[0]

dim0 = Weights.dims()[0]
dim1 = Weights.dims()[1] if len(Weights.dims()) > 1 else None
dim2 = Weights.dims()[2] if len(Weights.dims()) > 2 else None
dim3 = Weights.dims()[3] if len(Weights.dims()) > 3 else None
# Make the lambda corresponding to Weights(0) == 0
lambdat = af.constant(lambda_param, dim0, dim1, dim2, dim3)

# No regularization for bias weights
lambdat[0, :] = 0

# Get the prediction
H = predict_prob(X, Weights)

# Cost of misprediction
Jerr = -1 * af.sum(Y * af.log(H) + (1 - Y) * af.log(1 - H), dim=0)

# Regularization cost
Jreg = 0.5 * af.sum(lambdat * Weights * Weights, dim=0)

# Total cost
J = (Jerr + Jreg) / m

# Find the gradient of cost
D = (H - Y)
dJ = (af.matmulTN(X, D) + lambdat * Weights) / m

return J, dJ


def train(X, Y, alpha=0.1, lambda_param=1.0, maxerr=0.01, maxiter=1000, verbose=False):
# Initialize parameters to 0
Weights = af.constant(0, X.dims()[1], Y.dims()[1])

for i in range(maxiter):
# Get the cost and gradient
J, dJ = cost(Weights, X, Y, lambda_param)

err = af.max(af.abs(J))
if err < maxerr:
print('Iteration {0:4d} Err: {1:4f}'.format(i + 1, err))
print('Training converged')
return Weights

if verbose and ((i+1) % 10 == 0):
print('Iteration {0:4d} Err: {1:4f}'.format(i + 1, err))

# Update the parameters via gradient descent
Weights = Weights - alpha * dJ

if verbose:
print('Training stopped after {0:d} iterations'.format(maxiter))

return Weights


def benchmark_logistic_regression(train_feats, train_targets, test_feats):
t0 = time.time()
Weights = train(train_feats, train_targets, 0.1, 1.0, 0.01, 1000)
af.eval(Weights)
sync()
t1 = time.time()
dt = t1 - t0
print('Training time: {0:4.4f} s'.format(dt))

t0 = time.time()
iters = 100
for i in range(iters):
test_outputs = predict_prob(test_feats, Weights)
af.eval(test_outputs)
sync()
t1 = time.time()
dt = t1 - t0
print('Prediction time: {0:4.4f} s'.format(dt / iters))


# Demo of one vs all logistic regression
def logit_demo(console, perc):
# Load mnist data
frac = float(perc) / 100.0
mnist_data = setup_mnist(frac, True)
num_classes = mnist_data[0]
num_train = mnist_data[1]
num_test = mnist_data[2]
train_images = mnist_data[3]
test_images = mnist_data[4]
train_targets = mnist_data[5]
test_targets = mnist_data[6]

# Reshape images into feature vectors
feature_length = int(train_images.elements() / num_train);
train_feats = af.transpose(af.moddims(train_images, feature_length, num_train))
test_feats = af.transpose(af.moddims(test_images, feature_length, num_test))

train_targets = af.transpose(train_targets)
test_targets = af.transpose(test_targets)

num_train = train_feats.dims()[0]
num_test = test_feats.dims()[0]

# Add a bias that is always 1
train_bias = af.constant(1, num_train, 1)
test_bias = af.constant(1, num_test, 1)
train_feats = af.join(1, train_bias, train_feats)
test_feats = af.join(1, test_bias, test_feats)

# Train logistic regression parameters
Weights = train(train_feats, train_targets,
0.1, # learning rate
1.0, # regularization constant
0.01, # max error
1000, # max iters
True # verbose mode
)
af.eval(Weights)
af.sync()

# Predict the results
train_outputs = predict_prob(train_feats, Weights)
test_outputs = predict_prob(test_feats, Weights)

print('Accuracy on training data: {0:2.2f}'.format(accuracy(train_outputs, train_targets)))
print('Accuracy on testing data: {0:2.2f}'.format(accuracy(test_outputs, test_targets)))
print('Maximum error on testing data: {0:2.2f}'.format(abserr(test_outputs, test_targets)))

benchmark_logistic_regression(train_feats, train_targets, test_feats)

if not console:
test_outputs = af.transpose(test_outputs)
# Get 20 random test images
display_results(test_images, test_outputs, af.transpose(test_targets), 20, True)

def main():
argc = len(sys.argv)

device = int(sys.argv[1]) if argc > 1 else 0
console = sys.argv[2][0] == '-' if argc > 2 else False
perc = int(sys.argv[3]) if argc > 3 else 60

try:
af.set_device(device)
af.info()
logit_demo(console, perc)
except Exception as e:
print('Error: ', str(e))


if __name__ == '__main__':
main()
104 changes: 104 additions & 0 deletions examples/machine_learning/mnist_common.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2019, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

import os
import sys
sys.path.insert(0, '../common')
from idxio import read_idx

import arrayfire as af
from arrayfire.algorithm import where
from arrayfire.array import Array
from arrayfire.data import constant, lookup, moddims
from arrayfire.random import randu


def classify(arr, k, expand_labels):
ret_str = ''
if expand_labels:
vec = arr[:, k].as_type(af.Dtype.f32)
h_vec = vec.to_list()
data = []

for i in range(vec.elements()):
data.append((h_vec[i], i))

data = sorted(data, key=lambda pair: pair[0], reverse=True)

ret_str = str(data[0][1])

else:
ret_str = str(int(arr[k].as_type(af.Dtype.f32).scalar()))

return ret_str


def setup_mnist(frac, expand_labels):
root_path = os.path.dirname(os.path.abspath(__file__))
file_path = root_path + '/../../assets/examples/data/mnist/'
idims, idata = read_idx(file_path + 'images-subset')
ldims, ldata = read_idx(file_path + 'labels-subset')

idims.reverse()
numdims = len(idims)
images = af.Array(idata, tuple(idims))

R = af.randu(10000, 1);
cond = R < min(frac, 0.8)
train_indices = af.where(cond)
test_indices = af.where(~cond)

train_images = af.lookup(images, train_indices, 2) / 255
test_images = af.lookup(images, test_indices, 2) / 255

num_classes = 10
num_train = train_images.dims()[2]
num_test = test_images.dims()[2]

if expand_labels:
train_labels = af.constant(0, num_classes, num_train)
test_labels = af.constant(0, num_classes, num_test)

h_train_idx = train_indices.to_list()
h_test_idx = test_indices.to_list()

for i in range(num_train):
train_labels[ldata[h_train_idx[i]], i] = 1

for i in range(num_test):
test_labels[ldata[h_test_idx[i]], i] = 1

else:
labels = af.Array(ldata, tuple(ldims))
train_labels = labels[train_indices]
test_labels = labels[test_indices]

return (num_classes,
num_train,
num_test,
train_images,
test_images,
train_labels,
test_labels)


def display_results(test_images, test_output, test_actual, num_display, expand_labels):
for i in range(num_display):
print('Predicted: ', classify(test_output, i, expand_labels))
print('Actual: ', classify(test_actual, i, expand_labels))

img = (test_images[:, :, i] > 0.1).as_type(af.Dtype.u8)
img = af.moddims(img, img.elements()).to_list()
for j in range(28):
for k in range(28):
print('\u2588' if img[j * 28 + k] > 0 else ' ', end='')
print()
input()