Skip to content

Fix random state not being used for sampling configurations #1329

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Dec 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 91 additions & 30 deletions autosklearn/util/pipeline.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
# -*- encoding: utf-8 -*-
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Union

from ConfigSpace.configuration_space import ConfigurationSpace

from sklearn.pipeline import Pipeline
import numpy as np

from autosklearn.constants import (
BINARY_CLASSIFICATION,
Expand All @@ -16,27 +16,69 @@
from autosklearn.pipeline.regression import SimpleRegressionPipeline


__all__ = [
'get_configuration_space',
'get_class',
]
__all__ = ['get_configuration_space']


def get_configuration_space(info: Dict[str, Any],
include: Optional[Dict[str, List[str]]] = None,
exclude: Optional[Dict[str, List[str]]] = None,
) -> ConfigurationSpace:
def get_configuration_space(
info: Dict[str, Any],
include: Optional[Dict[str, List[str]]] = None,
exclude: Optional[Dict[str, List[str]]] = None,
random_state: Optional[Union[int, np.random.RandomState]] = None
) -> ConfigurationSpace:
"""Get the configuration of a pipeline given some dataset info

Parameters
----------
info: Dict[str, Any]
Information about the dataset

include: Optional[Dict[str, List[str]]] = None
A dictionary of what components to include for each pipeline step

exclude: Optional[Dict[str, List[str]]] = None
A dictionary of what components to exclude for each pipeline step

random_state: Optional[Union[int, np.random.Randomstate]] = None
The random state to use for seeding the ConfigSpace

Returns
-------
ConfigurationSpace
The configuration space for the pipeline
"""
if info['task'] in REGRESSION_TASKS:
return _get_regression_configuration_space(info, include, exclude)
return _get_regression_configuration_space(info, include, exclude, random_state)
else:
return _get_classification_configuration_space(info, include, exclude)
return _get_classification_configuration_space(info, include, exclude, random_state)


def _get_regression_configuration_space(
info: Dict[str, Any],
include: Optional[Dict[str, List[str]]],
exclude: Optional[Dict[str, List[str]]],
random_state: Optional[Union[int, np.random.RandomState]] = None
) -> ConfigurationSpace:
"""Get the configuration of a regression pipeline given some dataset info

def _get_regression_configuration_space(info: Dict[str, Any],
include: Optional[Dict[str, List[str]]],
exclude: Optional[Dict[str, List[str]]]
) -> ConfigurationSpace:
Parameters
----------
info: Dict[str, Any]
Information about the dataset

include: Optional[Dict[str, List[str]]] = None
A dictionary of what components to include for each pipeline step

exclude: Optional[Dict[str, List[str]]] = None
A dictionary of what components to exclude for each pipeline step

random_state: Optional[Union[int, np.random.Randomstate]] = None
The random state to use for seeding the ConfigSpace

Returns
-------
ConfigurationSpace
The configuration space for the regression pipeline
"""
task_type = info['task']
sparse = False
multioutput = False
Expand All @@ -54,15 +96,39 @@ def _get_regression_configuration_space(info: Dict[str, Any],
configuration_space = SimpleRegressionPipeline(
dataset_properties=dataset_properties,
include=include,
exclude=exclude
exclude=exclude,
random_state=random_state
).get_hyperparameter_search_space()
return configuration_space


def _get_classification_configuration_space(info: Dict[str, Any],
include: Optional[Dict[str, List[str]]],
exclude: Optional[Dict[str, List[str]]]
) -> ConfigurationSpace:
def _get_classification_configuration_space(
info: Dict[str, Any],
include: Optional[Dict[str, List[str]]],
exclude: Optional[Dict[str, List[str]]],
random_state: Optional[Union[int, np.random.RandomState]] = None
) -> ConfigurationSpace:
"""Get the configuration of a classification pipeline given some dataset info

Parameters
----------
info: Dict[str, Any]
Information about the dataset

include: Optional[Dict[str, List[str]]] = None
A dictionary of what components to include for each pipeline step

exclude: Optional[Dict[str, List[str]]] = None
A dictionary of what components to exclude for each pipeline step

random_state: Optional[Union[int, np.random.Randomstate]] = None
The random state to use for seeding the ConfigSpace

Returns
-------
ConfigurationSpace
The configuration space for the classification pipeline
"""
task_type = info['task']

multilabel = False
Expand All @@ -87,12 +153,7 @@ def _get_classification_configuration_space(info: Dict[str, Any],

return SimpleClassificationPipeline(
dataset_properties=dataset_properties,
include=include, exclude=exclude).\
get_hyperparameter_search_space()


def get_class(info: Dict[str, Any]) -> Pipeline:
if info['task'] in REGRESSION_TASKS:
return SimpleRegressionPipeline
else:
return SimpleClassificationPipeline
include=include,
exclude=exclude,
random_state=random_state
).get_hyperparameter_search_space()
4 changes: 2 additions & 2 deletions test/test_metalearning/pyMetaLearn/test_meta_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@ def setUp(self):
data_dir = os.path.join(data_dir, 'test_meta_base_data')
os.chdir(data_dir)

cs = autosklearn.pipeline.classification.SimpleClassificationPipeline()\
.get_hyperparameter_search_space()
pipeline = autosklearn.pipeline.classification.SimpleClassificationPipeline()
cs = pipeline.get_hyperparameter_search_space()

self.logger = logging.getLogger()
self.base = MetaBase(cs, data_dir, logger=self.logger)
Expand Down
4 changes: 2 additions & 2 deletions test/test_metalearning/pyMetaLearn/test_metalearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@ def setUp(self):
data_dir = os.path.join(data_dir, 'test_meta_base_data')
os.chdir(data_dir)

self.cs = autosklearn.pipeline.classification\
.SimpleClassificationPipeline().get_hyperparameter_search_space()
pipeline = autosklearn.pipeline.classification.SimpleClassificationPipeline()
self.cs = pipeline.get_hyperparameter_search_space()

self.logger = logging.getLogger()
meta_base = MetaBase(self.cs, data_dir, logger=self.logger)
Expand Down
14 changes: 4 additions & 10 deletions test/test_pipeline/components/data_preprocessing/test_balancing.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,9 +108,7 @@ def test_weighting_effect(self):
default = cs.get_default_configuration()
default._values['balancing:strategy'] = strategy

classifier = SimpleClassificationPipeline(
config=default, **model_args
)
classifier = SimpleClassificationPipeline(config=default, **model_args)
classifier.fit(X_train, Y_train)

predictions1 = classifier.predict(X_test)
Expand All @@ -126,9 +124,7 @@ def test_weighting_effect(self):
X_test = data_[0][100:]
Y_test = data_[1][100:]

classifier = SimpleClassificationPipeline(
config=default, **model_args
)
classifier = SimpleClassificationPipeline(config=default, **model_args)
Xt, fit_params = classifier.fit_transformer(X_train, Y_train)
classifier.fit_estimator(Xt, Y_train, **fit_params)

Expand Down Expand Up @@ -157,8 +153,7 @@ def test_weighting_effect(self):

include = {'classifier': ['sgd'], 'feature_preprocessor': [name]}

classifier = SimpleClassificationPipeline(
random_state=1, include=include)
classifier = SimpleClassificationPipeline(random_state=1, include=include)
cs = classifier.get_hyperparameter_search_space()
default = cs.get_default_configuration()
default._values['balancing:strategy'] = strategy
Expand All @@ -177,8 +172,7 @@ def test_weighting_effect(self):
Y_test = data_[1][100:]

default._values['balancing:strategy'] = strategy
classifier = SimpleClassificationPipeline(
default, random_state=1, include=include)
classifier = SimpleClassificationPipeline(default, random_state=1, include=include)
Xt, fit_params = classifier.fit_transformer(X_train, Y_train)
classifier.fit_estimator(Xt, Y_train, **fit_params)
predictions = classifier.predict(X_test)
Expand Down
Loading