Asymmetric Content-aided Transformer for Efficient Image Super-Resolution
Qian Wang, Yanyu Mao, Ruilong Guo, Yao Tang, Jing Wei, Bo Quan
pip install -r requirements.txt
The trainset uses the DIV2K (800). In order to effectively improve the training speed, images are cropped to 480 * 480 images by running script extract_subimages.py, and the dataloader will further randomly crop the images to the GT_size required for training. GT_size defaults to 128/192/256 (×2/×3/×4).
python extract_subimages.py
The input and output paths of cropped pictures can be modify in this script. Default location: ./datasets/DIV2K.
### Train ###
### ACT ###
python train.py -opt ./options/train/ACT/train_act_x2.yml --auto_resume # ×2
python train.py -opt ./options/train/ACT/train_act_x3.yml --auto_resume # ×3
python train.py -opt ./options/train/ACT/train_act_x4.yml --auto_resume # ×4
For more training commands, please check the docs in BasicSR
### Test ###
### ACT for Lightweight Image Super-Resolution ###
python basicsr/test.py -opt ./options/test/ACT/test_act_x2.yml # ×2
python basicsr/test.py -opt ./options/test/ACT/test_act_x3.yml # ×3
python basicsr/test.py -opt ./options/test/ACT/test_act_x4.yml # ×4
### ACT for Large Image Super-Resolution ###
### Flicker2K Test2K Test4K Test8K ###
python basicsr/test.py -opt ./options/test/ACT/test_act_large.yml # large image
The inference results on benchmark datasets will be available at Google Drive.
If you have any questions, please feel free to contact us [email protected] and [email protected].