Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 132 additions & 0 deletions Competitive Coding/Backtrack/Sudoku.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
// A Backtracking program in C++ to solve Sudoku problem
#include <stdio.h>

// UNASSIGNED is used for empty cells in sudoku grid
#define UNASSIGNED 0

// N is used for size of Sudoku grid. Size will be NxN
#define N 9

// This function finds an entry in grid that is still unassigned
bool FindUnassignedLocation(int grid[N][N], int &row, int &col);

// Checks whether it will be legal to assign num to the given row,col
bool isSafe(int grid[N][N], int row, int col, int num);

/* Takes a partially filled-in grid and attempts to assign values to
all unassigned locations in such a way to meet the requirements
for Sudoku solution (non-duplication across rows, columns, and boxes) */
bool SolveSudoku(int grid[N][N])
{
int row, col;

// If there is no unassigned location, we are done
if (!FindUnassignedLocation(grid, row, col))
return true; // success!

// consider digits 1 to 9
for (int num = 1; num <= 9; num++)
{
// if looks promising
if (isSafe(grid, row, col, num))
{
// make tentative assignment
grid[row][col] = num;

// return, if success, yay!
if (SolveSudoku(grid))
return true;

// failure, unmake & try again
grid[row][col] = UNASSIGNED;
}
}
return false; // this triggers backtracking
}

/* Searches the grid to find an entry that is still unassigned. If
found, the reference parameters row, col will be set the location
that is unassigned, and true is returned. If no unassigned entries
remain, false is returned. */
bool FindUnassignedLocation(int grid[N][N], int &row, int &col)
{
for (row = 0; row < N; row++)
for (col = 0; col < N; col++)
if (grid[row][col] == UNASSIGNED)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
in the specified row matches the given number. */
bool UsedInRow(int grid[N][N], int row, int num)
{
for (int col = 0; col < N; col++)
if (grid[row][col] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
in the specified column matches the given number. */
bool UsedInCol(int grid[N][N], int col, int num)
{
for (int row = 0; row < N; row++)
if (grid[row][col] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
within the specified 3x3 box matches the given number. */
bool UsedInBox(int grid[N][N], int boxStartRow, int boxStartCol, int num)
{
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)
if (grid[row+boxStartRow][col+boxStartCol] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether it will be legal to assign
num to the given row,col location. */
bool isSafe(int grid[N][N], int row, int col, int num)
{
/* Check if 'num' is not already placed in current row,
current column and current 3x3 box */
return !UsedInRow(grid, row, num) &&
!UsedInCol(grid, col, num) &&
!UsedInBox(grid, row - row%3 , col - col%3, num);
}

/* A utility function to print grid */
void printGrid(int grid[N][N])
{
for (int row = 0; row < N; row++)
{
for (int col = 0; col < N; col++)
printf("%2d", grid[row][col]);
printf("\n");
}
}

/* Driver Program to test above functions */
int main()
{
// 0 means unassigned cells
int grid[N][N] = {{3, 0, 6, 5, 0, 8, 4, 0, 0},
{5, 2, 0, 0, 0, 0, 0, 0, 0},
{0, 8, 7, 0, 0, 0, 0, 3, 1},
{0, 0, 3, 0, 1, 0, 0, 8, 0},
{9, 0, 0, 8, 6, 3, 0, 0, 5},
{0, 5, 0, 0, 9, 0, 6, 0, 0},
{1, 3, 0, 0, 0, 0, 2, 5, 0},
{0, 0, 0, 0, 0, 0, 0, 7, 4},
{0, 0, 5, 2, 0, 6, 3, 0, 0}};
if (SolveSudoku(grid) == true)
printGrid(grid);
else
printf("No solution exists");

return 0;
}
104 changes: 104 additions & 0 deletions Competitive Coding/Backtrack/nQueen.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
/* C/C++ program to solve N Queen Problem using backtracking */
#define N 4
#include<stdio.h>

/* A utility function to print solution */
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
printf(" %d ", board[i][j]);
printf("\n");
}
}

/* A utility function to check if a queen can
be placed on board[row][col]. Note that this
function is called when "col" queens are
already placed in columns from 0 to col -1.
So we need to check only left side for
attacking queens */
bool isSafe(int board[N][N], int row, int col)
{
int i, j;

/* Check this row on left side */
for (i = 0; i < col; i++)
if (board[row][i])
return false;

/* Check upper diagonal on left side */
for (i=row, j=col; i>=0 && j>=0; i--, j--)
if (board[i][j])
return false;

/* Check lower diagonal on left side */
for (i=row, j=col; j>=0 && i<N; i++, j--)
if (board[i][j])
return false;

return true;
}

/* A recursive utility function to solve N Queen problem */
bool solveNQUtil(int board[N][N], int col)
{
/* base case: If all queens are placed then return true */
if (col >= N)
return true;

/* Consider this column and try placing this queen in all rows one by one */
for (int i = 0; i < N; i++)
{
/* Check if queen can be placed on board[i][col] */
if ( isSafe(board, i, col) )
{
/* Place this queen in board[i][col] */
board[i][col] = 1;

/* recur to place rest of the queens */
if ( solveNQUtil(board, col + 1) )
return true;

/* If placing queen in board[i][col] doesn't lead to a solution, then remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}

/* If queen can not be place in any row in this colum col then return false */
return false;
}

/* This function solves the N Queen problem using
Backtracking. It mainly uses solveNQUtil() to
solve the problem. It returns false if queens
cannot be placed, otherwise return true and
prints placement of queens in the form of 1s.
Please note that there may be more than one
solutions, this function prints one of the
feasible solutions.*/
bool solveNQ()
{
int board[N][N] = { {0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};

if ( solveNQUtil(board, 0) == false )
{
printf("Solution does not exist");
return false;
}

printSolution(board);
return true;
}

// driver program to test above function
int main()
{
solveNQ();
return 0;
}