CVQP solves large-scale CVaR-constrained quadratic programs with millions of scenarios, where standard solvers fail or are prohibitively slow. It also provides an efficient algorithm for Euclidean projection onto CVaR constraints (equivalently, sum-of-k-largest constraints). For details, see our paper.
From PyPI:
pip install cvqp
From source:
git clone https://github.com/cvxgrp/cvqp.git
cd cvqp
poetry install
poetry run pip install -e .
CVQP solves problems of the form
where
Below we show how to formulate and solve a CVQP arising from a portfolio construction problem:
import numpy as np
from cvqp import solve_cvqp
# Generate data
np.random.seed(1)
n_assets = 100
n_scenarios = 10000
R = np.random.randn(n_scenarios, n_assets) * 0.1 + 0.01
mu = np.mean(R, axis=0)
Sigma = np.cov(R.T)
# Build problem matrices
P = Sigma
q = -mu
A = -R
B = np.vstack([np.ones((1, n_assets)), np.eye(n_assets)])
l = np.concatenate([[1.0], np.zeros(n_assets)])
u = np.concatenate([[1.0], np.ones(n_assets)])
# Solve portfolio optimization with CVaR constraint
beta = 0.95
kappa = 0.025
results = solve_cvqp(P=P, q=q, A=A, B=B, l=l, u=u,
beta=beta, kappa=kappa, verbose=True)
# Check CVaR at solution
losses = A @ results.x
k = int((1 - beta) * n_scenarios)
cvar = np.mean(np.sort(losses)[-k:])
print(f"CVaR at β={beta}: {cvar:.6f} (limit: {kappa})")
Projection onto a CVaR constraint finds the closest vector to a given vector
This is equivalent to projection onto a sum-of-k-largest constraint:
where
from cvqp import proj_cvar, proj_sum_largest
import numpy as np
# Project a vector onto CVaR constraint
v = np.array([3.0, 1.0, 4.0, 1.0, 5.0, 9.0, 2.0, 6.0])
beta = 0.75
kappa = 5.0
# Both formulations give the same result
x_cvar = proj_cvar(v, beta, kappa)
k = int((1 - beta) * len(v))
d = kappa * k
x_sum = proj_sum_largest(v, k, d)
# Verify constraints are satisfied
cvar_original = np.mean(np.sort(v)[-k:])
cvar_projected = np.mean(np.sort(x_cvar)[-k:])
print(f"Original: {v}")
print(f"Projected: {x_cvar}")
print(f"CVaR: {cvar_original:.2f} → {cvar_projected:.2f} (limit: {kappa})")
print(f"Equivalent to sum-k-largest: {np.allclose(x_cvar, x_sum)}")
See benchmarks/
for benchmark results against MOSEK and Clarabel on a suite of large-scale problems.
If you use CVQP in your research, please cite:
@misc{cvqp2025,
title={An Operator Splitting Method for Large-Scale {CVaR}-Constrained Quadratic Programs},
author={Luxenberg, Eric and P\'erez-Pi\~neiro, David and Diamond, Steven and Boyd, Stephen},
year={2025},
eprint={2504.10814},
archivePrefix={arXiv},
primaryClass={math.OC},
url={https://arxiv.org/abs/2504.10814}
}