Skip to content

DLPX-84995 NFSD: Never call nfsd_file_gc() in foreground paths #35

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 21, 2023

Conversation

don-brady
Copy link
Contributor

Background

Recent escalations uncovered a bug in the NFS server file cache where lots of NFSv4 file opens causes the NFSD threads to consume a majority of CPU resources. This excessive kernel CPU consumption can cause the system to be non-responsive.

Problem

Per the upstream commit:

The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.

Solution

Pull in the upstream commit that stops calling nfsd_file_gc() inline for nfsd threads.

Testing Done

ab-pre-push: http://selfservice.jenkins.delphix.com/job/appliance-build-orchestrator-pre-push/4832/

Tested before/after with 17,000 opened files on a NFSv4 mount and ran a workload that cause lots of churn. For the before case, a 30 second kernel profile has NFSD using 36% CPU, whereas for the fixed kernel it is only using 6% CPU

Before:
bad

With the fix:
fixed

Future Work

There are additional upstream fixes in this problem space that would require refactoring to bring in since they are based off of a 6.1 kernel and we currently are running 5.4 kernels.

The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
@don-brady don-brady changed the title DLPX 84985 DLPX-84995 NFSD: Never call nfsd_file_gc() in foreground paths Mar 17, 2023
@don-brady don-brady merged commit 8e2e150 into delphix:6.0/stage Mar 21, 2023
@don-brady don-brady deleted the dlpx-84995-aws branch March 21, 2023 20:52
delphix-devops-bot pushed a commit that referenced this pull request Mar 30, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
prakashsurya pushed a commit that referenced this pull request Apr 4, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 28, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 31, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 3, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 4, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 5, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
prakashsurya pushed a commit that referenced this pull request Aug 8, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 17, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 18, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 19, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 20, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 21, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 22, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 23, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 24, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 25, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 26, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 27, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 7, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 8, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 20, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 6, 2023
BugLink: https://bugs.launchpad.net/bugs/2032689

[ Upstream commit 2aaa8a1 ]

With some IPv6 Ext Hdr (RPL, SRv6, etc.), we can send a packet that
has the link-local address as src and dst IP and will be forwarded to
an external IP in the IPv6 Ext Hdr.

For example, the script below generates a packet whose src IP is the
link-local address and dst is updated to 11::.

  # for f in $(find /proc/sys/net/ -name *seg6_enabled*); do echo 1 > $f; done
  # python3
  >>> from socket import *
  >>> from scapy.all import *
  >>>
  >>> SRC_ADDR = DST_ADDR = "fe80::5054:ff:fe12:3456"
  >>>
  >>> pkt = IPv6(src=SRC_ADDR, dst=DST_ADDR)
  >>> pkt /= IPv6ExtHdrSegmentRouting(type=4, addresses=["11::", "22::"], segleft=1)
  >>>
  >>> sk = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW)
  >>> sk.sendto(bytes(pkt), (DST_ADDR, 0))

For such a packet, we call ip6_route_input() to look up a route for the
next destination in these three functions depending on the header type.

  * ipv6_rthdr_rcv()
  * ipv6_rpl_srh_rcv()
  * ipv6_srh_rcv()

If no route is found, ip6_null_entry is set to skb, and the following
dst_input(skb) calls ip6_pkt_drop().

Finally, in icmp6_dev(), we dereference skb_rt6_info(skb)->rt6i_idev->dev
as the input device is the loopback interface.  Then, we have to check if
skb_rt6_info(skb)->rt6i_idev is NULL or not to avoid NULL pointer deref
for ip6_null_entry.

BUG: kernel NULL pointer dereference, address: 0000000000000000
 PF: supervisor read access in kernel mode
 PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 157 Comm: python3 Not tainted 6.4.0-11996-gb121d614371c #35
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:icmp6_send (net/ipv6/icmp.c:436 net/ipv6/icmp.c:503)
Code: fe ff ff 48 c7 40 30 c0 86 5d 83 e8 c6 44 1c 00 e9 c8 fc ff ff 49 8b 46 58 48 83 e0 fe 0f 84 4a fb ff ff 48 8b 80 d0 00 00 00 <48> 8b 00 44 8b 88 e0 00 00 00 e9 34 fb ff ff 4d 85 ed 0f 85 69 01
RSP: 0018:ffffc90000003c70 EFLAGS: 00000286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 00000000000000e0
RDX: 0000000000000021 RSI: 0000000000000000 RDI: ffff888006d72a18
RBP: ffffc90000003d80 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc90000003d98 R11: 0000000000000040 R12: ffff888006d72a10
R13: 0000000000000000 R14: ffff8880057fb800 R15: ffffffff835d86c0
FS:  00007f9dc72ee740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000057b2000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
 <IRQ>
 ip6_pkt_drop (net/ipv6/route.c:4513)
 ipv6_rthdr_rcv (net/ipv6/exthdrs.c:640 net/ipv6/exthdrs.c:686)
 ip6_protocol_deliver_rcu (net/ipv6/ip6_input.c:437 (discriminator 5))
 ip6_input_finish (./include/linux/rcupdate.h:781 net/ipv6/ip6_input.c:483)
 __netif_receive_skb_one_core (net/core/dev.c:5455)
 process_backlog (./include/linux/rcupdate.h:781 net/core/dev.c:5895)
 __napi_poll (net/core/dev.c:6460)
 net_rx_action (net/core/dev.c:6529 net/core/dev.c:6660)
 __do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
 do_softirq (kernel/softirq.c:454 kernel/softirq.c:441)
 </IRQ>
 <TASK>
 __local_bh_enable_ip (kernel/softirq.c:381)
 __dev_queue_xmit (net/core/dev.c:4231)
 ip6_finish_output2 (./include/net/neighbour.h:544 net/ipv6/ip6_output.c:135)
 rawv6_sendmsg (./include/net/dst.h:458 ./include/linux/netfilter.h:303 net/ipv6/raw.c:656 net/ipv6/raw.c:914)
 sock_sendmsg (net/socket.c:725 net/socket.c:748)
 __sys_sendto (net/socket.c:2134)
 __x64_sys_sendto (net/socket.c:2146 net/socket.c:2142 net/socket.c:2142)
 do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
RIP: 0033:0x7f9dc751baea
Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89
RSP: 002b:00007ffe98712c38 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007ffe98712cf8 RCX: 00007f9dc751baea
RDX: 0000000000000060 RSI: 00007f9dc6460b90 RDI: 0000000000000003
RBP: 00007f9dc56e8be0 R08: 00007ffe98712d70 R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: ffffffffc4653600 R14: 0000000000000001 R15: 00007f9dc6af5d1b
 </TASK>
Modules linked in:
CR2: 0000000000000000
 ---[ end trace 0000000000000000 ]---
RIP: 0010:icmp6_send (net/ipv6/icmp.c:436 net/ipv6/icmp.c:503)
Code: fe ff ff 48 c7 40 30 c0 86 5d 83 e8 c6 44 1c 00 e9 c8 fc ff ff 49 8b 46 58 48 83 e0 fe 0f 84 4a fb ff ff 48 8b 80 d0 00 00 00 <48> 8b 00 44 8b 88 e0 00 00 00 e9 34 fb ff ff 4d 85 ed 0f 85 69 01
RSP: 0018:ffffc90000003c70 EFLAGS: 00000286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 00000000000000e0
RDX: 0000000000000021 RSI: 0000000000000000 RDI: ffff888006d72a18
RBP: ffffc90000003d80 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc90000003d98 R11: 0000000000000040 R12: ffff888006d72a10
R13: 0000000000000000 R14: ffff8880057fb800 R15: ffffffff835d86c0
FS:  00007f9dc72ee740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000057b2000 CR4: 00000000007506f0
PKRU: 55555554
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: disabled

Fixes: 4832c30 ("net: ipv6: put host and anycast routes on device with address")
Reported-by: Wang Yufen <[email protected]>
Closes: https://lore.kernel.org/netdev/[email protected]/
Signed-off-by: Kuniyuki Iwashima <[email protected]>
Reviewed-by: David Ahern <[email protected]>
Reviewed-by: Eric Dumazet <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
Signed-off-by: Kamal Mostafa <[email protected]>
Signed-off-by: Stefan Bader <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Oct 6, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 7, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 8, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 9, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 10, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 21, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Nov 1, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Nov 22, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Dec 9, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Dec 10, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jan 27, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Feb 9, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Mar 1, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Mar 21, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 14, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2024
When we are slave role and receives l2cap conn req when encryption has
started, we should check the enc key size to avoid KNOB attack or BLUFFS
attack.
From SIG recommendation, implementations are advised to reject
service-level connections on an encrypted baseband link with key
strengths below 7 octets.
A simple and clear way to achieve this is to place the enc key size
check in hci_cc_read_enc_key_size()

The btmon log below shows the case that lacks enc key size check.

> HCI Event: Connect Request (0x04) plen 10
        Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Class: 0x480104
          Major class: Computer (desktop, notebook, PDA, organizers)
          Minor class: Desktop workstation
          Capturing (Scanner, Microphone)
          Telephony (Cordless telephony, Modem, Headset)
        Link type: ACL (0x01)
< HCI Command: Accept Connection Request (0x01|0x0009) plen 7
        Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Role: Peripheral (0x01)
> HCI Event: Command Status (0x0f) plen 4
      Accept Connection Request (0x01|0x0009) ncmd 2
        Status: Success (0x00)
> HCI Event: Connect Complete (0x03) plen 11
        Status: Success (0x00)
        Handle: 1
        Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Link type: ACL (0x01)
        Encryption: Disabled (0x00)
...

> HCI Event: Encryption Change (0x08) plen 4
        Status: Success (0x00)
        Handle: 1 Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Encryption: Enabled with E0 (0x01)
< HCI Command: Read Encryption Key Size (0x05|0x0008) plen 2
        Handle: 1 Address: BB:22:33:44:55:99 (OUI BB-22-33)
> HCI Event: Command Complete (0x0e) plen 7
      Read Encryption Key Size (0x05|0x0008) ncmd 2
        Status: Success (0x00)
        Handle: 1 Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Key size: 6
// We should check the enc key size
...

> ACL Data RX: Handle 1 flags 0x02 dlen 12
      L2CAP: Connection Request (0x02) ident 3 len 4
        PSM: 25 (0x0019)
        Source CID: 64
< ACL Data TX: Handle 1 flags 0x00 dlen 16
      L2CAP: Connection Response (0x03) ident 3 len 8
        Destination CID: 64
        Source CID: 64
        Result: Connection pending (0x0001)
        Status: Authorization pending (0x0002)
> HCI Event: Number of Completed Packets (0x13) plen 5
        Num handles: 1
        Handle: 1 Address: BB:22:33:44:55:99 (OUI BB-22-33)
        Count: 1
        #35: len 16 (25 Kb/s)
        Latency: 5 msec (2-7 msec ~4 msec)
< ACL Data TX: Handle 1 flags 0x00 dlen 16
      L2CAP: Connection Response (0x03) ident 3 len 8
        Destination CID: 64
        Source CID: 64
        Result: Connection successful (0x0000)
        Status: No further information available (0x0000)

Cc: [email protected]
Signed-off-by: Alex Lu <[email protected]>
Signed-off-by: Max Chou <[email protected]>
Signed-off-by: Luiz Augusto von Dentz <[email protected]>
(backported from commit 04a342c)
[yuxuan.luo: manually backported. Renamed status to rp_status to avoid
 name conflict with the function argument "status".
]
CVE-2023-24023
Signed-off-by: Yuxuan Luo <[email protected]>
Acked-by: Jacob Martin <[email protected]>
Acked-by: Roxana Nicolescu <[email protected]>
Signed-off-by: Roxana Nicolescu <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 22, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 23, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 13, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jul 5, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Aug 1, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Development

Successfully merging this pull request may close these issues.

4 participants