Skip to content

DLPX-84995 NFSD: Never call nfsd_file_gc() in foreground paths #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 21, 2023

Conversation

don-brady
Copy link
Contributor

Background

Recent escalations uncovered a bug in the NFS server file cache where lots of NFSv4 file opens causes the NFSD threads to consume a majority of CPU resources. This excessive kernel CPU consumption can cause the system to be non-responsive.

Problem

Per the upstream commit:

The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.

Solution

Pull in the upstream commit that stops calling nfsd_file_gc() inline for nfsd threads.

Testing Done

ab-pre-push: http://selfservice.jenkins.delphix.com/job/appliance-build-orchestrator-pre-push/4832/

Tested before/after with 17,000 opened files on a NFSv4 mount and ran a workload that cause lots of churn. For the before case, a 30 second kernel profile has NFSD using 36% CPU, whereas for the fixed kernel it is only using 6% CPU

Before:
bad

With the fix:
fixed

Future Work

There are additional upstream fixes in this problem space that would require refactoring to bring in since they are based off of a 6.1 kernel and we currently are running 5.4 kernels.

The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
@don-brady don-brady merged commit 5a709b9 into delphix:6.0/stage Mar 21, 2023
@don-brady don-brady deleted the dlpx-84995-azure branch March 21, 2023 20:49
delphix-devops-bot pushed a commit that referenced this pull request Mar 30, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
prakashsurya pushed a commit that referenced this pull request Apr 6, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 28, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 26, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 3, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 4, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 5, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
prakashsurya pushed a commit that referenced this pull request Aug 8, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 1, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 2, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 13, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Sep 20, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 6, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 21, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Oct 22, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Nov 1, 2023
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Nov 1, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Dec 1, 2023
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Dec 1, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Dec 9, 2023
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Dec 9, 2023
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jan 27, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Jan 27, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Feb 17, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Mar 25, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit to jwk404/linux-kernel-azure that referenced this pull request Mar 25, 2024
…ix#25)

The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Mar 26, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Mar 27, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 10, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 10, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 11, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 14, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Apr 15, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Apr 20, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 9, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request May 9, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request May 16, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request May 16, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
delphix-devops-bot pushed a commit that referenced this pull request Jun 30, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
jwk404 pushed a commit that referenced this pull request Jul 27, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Aug 1, 2024
The checks in nfsd_file_acquire() and nfsd_file_put() that directly
invoke filecache garbage collection are intended to keep cache
occupancy between a low- and high-watermark. The reason to limit the
capacity of the filecache is to keep filecache lookups reasonably
fast.

However, invoking garbage collection at those points has some
undesirable negative impacts. Files that are held open by NFSv4
clients often push the occupancy of the filecache over these
watermarks. At that point:

- Every call to nfsd_file_acquire() and nfsd_file_put() results in
  an LRU walk. This has the same effect on lookup latency as long
  chains in the hash table.
- Garbage collection will then run on every nfsd thread, causing a
  lot of unnecessary lock contention.
- Limiting cache capacity pushes out files used only by NFSv3
  clients, which are the type of files the filecache is supposed to
  help.

To address those negative impacts, remove the direct calls to the
garbage collector.
pcd1193182 pushed a commit to pcd1193182/linux-kernel-azure that referenced this pull request Aug 9, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty delphix#25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Aug 15, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Aug 22, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Sep 18, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Oct 20, 2024
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Feb 1, 2025
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Feb 27, 2025
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Mar 14, 2025
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request Apr 24, 2025
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
delphix-devops-bot pushed a commit that referenced this pull request May 8, 2025
BugLink: https://bugs.launchpad.net/bugs/2036450

`hostname` needs to be set as null-pointer after free in
`cifs_put_tcp_session` function, or when `cifsd` thread attempts
to resolve hostname and reconnect the host, the thread would deref
the invalid pointer.

Here is one of practical backtrace examples as reference:

Task 477
---------------------------
 do_mount
  path_mount
   do_new_mount
    vfs_get_tree
     smb3_get_tree
      smb3_get_tree_common
       cifs_smb3_do_mount
        cifs_mount
         mount_put_conns
          cifs_put_tcp_session
          --> kfree(server->hostname)

cifsd
---------------------------
 kthread
  cifs_demultiplex_thread
   cifs_reconnect
    reconn_set_ipaddr_from_hostname
    --> if (!server->hostname)
    --> if (server->hostname[0] == '\0')  // !! UAF fault here

CIFS: VFS: cifs_mount failed w/return code = -112
mount error(112): Host is down
BUG: KASAN: use-after-free in reconn_set_ipaddr_from_hostname+0x2ba/0x310
Read of size 1 at addr ffff888108f35380 by task cifsd/480
CPU: 2 PID: 480 Comm: cifsd Not tainted 6.1.0-rc2-00106-gf705792f89dd-dirty #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0x85
 print_report+0x16c/0x4a3
 kasan_report+0x95/0x190
 reconn_set_ipaddr_from_hostname+0x2ba/0x310
 __cifs_reconnect.part.0+0x241/0x800
 cifs_reconnect+0x65f/0xb60
 cifs_demultiplex_thread+0x1570/0x2570
 kthread+0x2c5/0x380
 ret_from_fork+0x22/0x30
 </TASK>
Allocated by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 __kasan_kmalloc+0x7e/0x90
 __kmalloc_node_track_caller+0x52/0x1b0
 kstrdup+0x3b/0x70
 cifs_get_tcp_session+0xbc/0x19b0
 mount_get_conns+0xa9/0x10c0
 cifs_mount+0xdf/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 477:
 kasan_save_stack+0x1e/0x40
 kasan_set_track+0x21/0x30
 kasan_save_free_info+0x2a/0x50
 __kasan_slab_free+0x10a/0x190
 __kmem_cache_free+0xca/0x3f0
 cifs_put_tcp_session+0x30c/0x450
 cifs_mount+0xf95/0x1970
 cifs_smb3_do_mount+0x295/0x1660
 smb3_get_tree+0x352/0x5e0
 vfs_get_tree+0x8e/0x2e0
 path_mount+0xf8c/0x1990
 do_mount+0xee/0x110
 __x64_sys_mount+0x14b/0x1f0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888108f35380
 which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
 16-byte region [ffff888108f35380, ffff888108f35390)
The buggy address belongs to the physical page:
page:00000000333f8e58 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888108f350e0 pfn:0x108f35
flags: 0x200000000000200(slab|node=0|zone=2)
raw: 0200000000000200 0000000000000000 dead000000000122 ffff8881000423c0
raw: ffff888108f350e0 000000008080007a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff888108f35280: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
 ffff888108f35300: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
>ffff888108f35380: fa fb fc fc fa fb fc fc fa fb fc fc fa fb fc fc
                   ^
 ffff888108f35400: fa fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff888108f35480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 7be3248 ("cifs: To match file servers, make sure the server hostname matches")
Signed-off-by: Zeng Heng <[email protected]>
Reviewed-by: Paulo Alcantara (SUSE) <[email protected]>
Signed-off-by: Steve French <[email protected]>
(cherry picked from commit 153695d)
Signed-off-by: Tim Gardner <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Development

Successfully merging this pull request may close these issues.

3 participants