You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
+9-9Lines changed: 9 additions & 9 deletions
Original file line number
Diff line number
Diff line change
@@ -78,9 +78,9 @@ Transforms.CategoricalOneHotVectorizer Converts the categorical value into an in
78
78
Transforms.CharacterTokenizerCharacter-oriented tokenizer where text is considered a sequence of characters.Microsoft.ML.Transforms.Text.TextAnalyticsCharTokenizeMicrosoft.ML.Transforms.Text.TokenizingByCharactersTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
79
79
Transforms.ColumnConcatenatorConcatenates one or more columns of the same item type.Microsoft.ML.EntryPoints.SchemaManipulationConcatColumnsMicrosoft.ML.Data.ColumnConcatenatingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
80
80
Transforms.ColumnCopierDuplicates columns from the datasetMicrosoft.ML.EntryPoints.SchemaManipulationCopyColumnsMicrosoft.ML.Transforms.ColumnCopyingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
81
-
Transforms.ColumnSelectorSelects a set of columns, dropping all othersMicrosoft.ML.EntryPoints.SchemaManipulationSelectColumnsMicrosoft.ML.Transforms.ColumnSelectingTransformer+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
81
+
Transforms.ColumnSelectorSelects a set of columns, dropping all othersMicrosoft.ML.EntryPoints.SchemaManipulationSelectColumnsMicrosoft.ML.Transforms.ColumnSelectingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
82
82
Transforms.ColumnTypeConverterConverts a column to a different type, using standard conversions.Microsoft.ML.Transforms.Conversions.TypeConversionConvertMicrosoft.ML.Transforms.Conversions.TypeConvertingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
83
-
Transforms.CombinerByContiguousGroupIdGroups values of a scalar column into a vector, by a contiguous group IDMicrosoft.ML.Transforms.GroupingOperationsGroupMicrosoft.ML.Transforms.GroupTransform+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
83
+
Transforms.CombinerByContiguousGroupIdGroups values of a scalar column into a vector, by a contiguous group IDMicrosoft.ML.Transforms.GroupingOperationsGroupMicrosoft.ML.Transforms.GroupTransform+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
84
84
Transforms.ConditionalNormalizerNormalize the columns only if neededMicrosoft.ML.Data.NormalizeIfNeededMicrosoft.ML.Transforms.Normalizers.NormalizeTransform+MinMaxArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput]
85
85
Transforms.DataCacheCaches using the specified cache option.Microsoft.ML.EntryPoints.CacheCacheDataMicrosoft.ML.EntryPoints.Cache+CacheInputMicrosoft.ML.EntryPoints.Cache+CacheOutput
86
86
Transforms.DatasetScorerScore a dataset with a predictor modelMicrosoft.ML.EntryPoints.ScoreModelScoreMicrosoft.ML.EntryPoints.ScoreModel+InputMicrosoft.ML.EntryPoints.ScoreModel+Output
@@ -98,7 +98,7 @@ Transforms.ImagePixelExtractor Extract color plane(s) from an image. Options inc
98
98
Transforms.ImageResizerScales an image to specified dimensions using one of the three scale types: isotropic with padding, isotropic with cropping or anisotropic. In case of isotropic padding, transparent color is used to pad resulting image.Microsoft.ML.ImageAnalytics.EntryPoints.ImageAnalyticsImageResizerMicrosoft.ML.ImageAnalytics.ImageResizingTransformer+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
99
99
Transforms.KeyToTextConverterKeyToValueTransform utilizes KeyValues metadata to map key indices to the corresponding values in the KeyValues metadata.Microsoft.ML.Transforms.Categorical.CategoricalKeyToTextMicrosoft.ML.Transforms.Conversions.KeyToValueMappingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
100
100
Transforms.LabelColumnKeyBooleanConverterTransforms the label to either key or bool (if needed) to make it suitable for classification.Microsoft.ML.EntryPoints.FeatureCombinerPrepareClassificationLabelMicrosoft.ML.EntryPoints.FeatureCombiner+ClassificationLabelInputMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
101
-
Transforms.LabelIndicatorLabel remapper used by OVAMicrosoft.ML.Transforms.LabelIndicatorTransformLabelIndicatorMicrosoft.ML.Transforms.LabelIndicatorTransform+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
101
+
Transforms.LabelIndicatorLabel remapper used by OVAMicrosoft.ML.Transforms.LabelIndicatorTransformLabelIndicatorMicrosoft.ML.Transforms.LabelIndicatorTransform+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
102
102
Transforms.LabelToFloatConverterTransforms the label to float to make it suitable for regression.Microsoft.ML.EntryPoints.FeatureCombinerPrepareRegressionLabelMicrosoft.ML.EntryPoints.FeatureCombiner+RegressionLabelInputMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
103
103
Transforms.LightLdaThe LDA transform implements LightLDA, a state-of-the-art implementation of Latent Dirichlet Allocation.Microsoft.ML.Transforms.Text.TextAnalyticsLightLdaMicrosoft.ML.Transforms.Text.LatentDirichletAllocationTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
104
104
Transforms.LogMeanVarianceNormalizerNormalizes the data based on the computed mean and variance of the logarithm of the data.Microsoft.ML.Data.NormalizeLogMeanVarMicrosoft.ML.Transforms.Normalizers.NormalizeTransform+LogMeanVarArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
@@ -117,14 +117,14 @@ Transforms.NoOperation Does nothing. Microsoft.ML.Data.NopTransform Nop Microsof
117
117
Transforms.OptionalColumnCreatorIf the source column does not exist after deserialization, create a column with the right type and default values.Microsoft.ML.Transforms.OptionalColumnTransformMakeOptionalMicrosoft.ML.Transforms.OptionalColumnTransform+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
118
118
Transforms.PcaCalculatorPCA is a dimensionality-reduction transform which computes the projection of a numeric vector onto a low-rank subspace.Microsoft.ML.Transforms.Projections.PrincipalComponentAnalysisTransformerCalculateMicrosoft.ML.Transforms.Projections.PrincipalComponentAnalysisTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
119
119
Transforms.PredictedLabelColumnOriginalValueConverterTransforms a predicted label column to its original values, unless it is of type bool.Microsoft.ML.EntryPoints.FeatureCombinerConvertPredictedLabelMicrosoft.ML.EntryPoints.FeatureCombiner+PredictedLabelInputMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
120
-
Transforms.RandomNumberGeneratorAdds a column with a generated number sequence.Microsoft.ML.Transforms.RandomNumberGeneratorGenerateMicrosoft.ML.Transforms.GenerateNumberTransform+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
121
-
Transforms.RowRangeFilterFilters a dataview on a column of type Single, Double or Key (contiguous). Keeps the values that are in the specified min/max range. NaNs are always filtered out. If the input is a Key type, the min/max are considered percentages of the number of values.Microsoft.ML.EntryPoints.SelectRowsFilterByRangeMicrosoft.ML.Transforms.RangeFilter+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
122
-
Transforms.RowSkipAndTakeFilterAllows limiting input to a subset of rows at an optional offset. Can be used to implement data paging.Microsoft.ML.EntryPoints.SelectRowsSkipAndTakeFilterMicrosoft.ML.Transforms.SkipTakeFilter+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
123
-
Transforms.RowSkipFilterAllows limiting input to a subset of rows by skipping a number of rows.Microsoft.ML.EntryPoints.SelectRowsSkipFilterMicrosoft.ML.Transforms.SkipTakeFilter+SkipArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
124
-
Transforms.RowTakeFilterAllows limiting input to a subset of rows by taking N first rows.Microsoft.ML.EntryPoints.SelectRowsTakeFilterMicrosoft.ML.Transforms.SkipTakeFilter+TakeArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
120
+
Transforms.RandomNumberGeneratorAdds a column with a generated number sequence.Microsoft.ML.Transforms.RandomNumberGeneratorGenerateMicrosoft.ML.Transforms.GenerateNumberTransform+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
121
+
Transforms.RowRangeFilterFilters a dataview on a column of type Single, Double or Key (contiguous). Keeps the values that are in the specified min/max range. NaNs are always filtered out. If the input is a Key type, the min/max are considered percentages of the number of values.Microsoft.ML.EntryPoints.SelectRowsFilterByRangeMicrosoft.ML.Transforms.RangeFilter+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
122
+
Transforms.RowSkipAndTakeFilterAllows limiting input to a subset of rows at an optional offset. Can be used to implement data paging.Microsoft.ML.EntryPoints.SelectRowsSkipAndTakeFilterMicrosoft.ML.Transforms.SkipTakeFilter+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
123
+
Transforms.RowSkipFilterAllows limiting input to a subset of rows by skipping a number of rows.Microsoft.ML.EntryPoints.SelectRowsSkipFilterMicrosoft.ML.Transforms.SkipTakeFilter+SkipOptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
124
+
Transforms.RowTakeFilterAllows limiting input to a subset of rows by taking N first rows.Microsoft.ML.EntryPoints.SelectRowsTakeFilterMicrosoft.ML.Transforms.SkipTakeFilter+TakeOptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
125
125
Transforms.ScoreColumnSelectorSelects only the last score columns and the extra columns specified in the arguments.Microsoft.ML.EntryPoints.ScoreModelSelectColumnsMicrosoft.ML.EntryPoints.ScoreModel+ScoreColumnSelectorInputMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
126
126
Transforms.ScorerTurn the predictor model into a transform modelMicrosoft.ML.EntryPoints.ScoreModelMakeScoringTransformMicrosoft.ML.EntryPoints.ScoreModel+ModelInputMicrosoft.ML.EntryPoints.ScoreModel+Output
127
-
Transforms.SegregatorUn-groups vector columns into sequences of rows, inverse of Group transformMicrosoft.ML.Transforms.GroupingOperationsUngroupMicrosoft.ML.Transforms.UngroupTransform+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
127
+
Transforms.SegregatorUn-groups vector columns into sequences of rows, inverse of Group transformMicrosoft.ML.Transforms.GroupingOperationsUngroupMicrosoft.ML.Transforms.UngroupTransform+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
128
128
Transforms.SentimentAnalyzerUses a pretrained sentiment model to score input stringsMicrosoft.ML.Transforms.Text.TextAnalyticsAnalyzeSentimentMicrosoft.ML.Transforms.Text.SentimentAnalyzingTransformer+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
129
129
Transforms.TensorFlowScorerTransforms the data using the TensorFlow model.Microsoft.ML.Transforms.TensorFlowTransformerTensorFlowScorerMicrosoft.ML.Transforms.TensorFlowTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
130
130
Transforms.TextFeaturizerA transform that turns a collection of text documents into numerical feature vectors. The feature vectors are normalized counts of (word and/or character) ngrams in a given tokenized text.Microsoft.ML.Transforms.Text.TextAnalyticsTextTransformMicrosoft.ML.Transforms.Text.TextFeaturizingEstimator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
0 commit comments