Skip to content

Commit 797e87d

Browse files
author
Shahab Moradi
authored
API reference - Fix placeholder links (#3359)
* Removed tmpurl_lr * Replaced tmpurl_regularization * Replaced tmpurl_loss * Replaced tmpurl_calib
1 parent 89d148d commit 797e87d

File tree

8 files changed

+51
-51
lines changed

8 files changed

+51
-51
lines changed

src/Microsoft.ML.StandardTrainers/Standard/Online/AveragedLinear.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ namespace Microsoft.ML.Trainers
2121
public abstract class AveragedLinearOptions : OnlineLinearOptions
2222
{
2323
/// <summary>
24-
/// <a href="tmpurl_lr">Learning rate</a>.
24+
/// Learning rate.
2525
/// </summary>
2626
[Argument(ArgumentType.AtMostOnce, HelpText = "Learning rate", ShortName = "lr", SortOrder = 50)]
2727
[TGUI(Label = "Learning rate", SuggestedSweeps = "0.01,0.1,0.5,1.0")]
@@ -61,7 +61,7 @@ public abstract class AveragedLinearOptions : OnlineLinearOptions
6161
public bool LazyUpdate = true;
6262

6363
/// <summary>
64-
/// The L2 weight for <a href='tmpurl_regularization'>regularization</a>.
64+
/// The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.
6565
/// </summary>
6666
[Argument(ArgumentType.AtMostOnce, HelpText = "L2 Regularization Weight", ShortName = "reg,L2RegularizerWeight", SortOrder = 50)]
6767
[TGUI(Label = "L2 Regularization Weight")]

src/Microsoft.ML.StandardTrainers/Standard/Online/AveragedPerceptron.cs

+3-3
Original file line numberDiff line numberDiff line change
@@ -79,18 +79,18 @@ public sealed class AveragedPerceptronTrainer : AveragedLinearTrainer<BinaryPred
7979
public sealed class Options : AveragedLinearOptions
8080
{
8181
/// <summary>
82-
/// A custom <a href="tmpurl_loss">loss</a>.
82+
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
8383
/// </summary>
8484
[Argument(ArgumentType.Multiple, Name = "LossFunction", HelpText = "Loss Function", ShortName = "loss", SortOrder = 50)]
8585
internal ISupportClassificationLossFactory ClassificationLossFunctionFactory = new HingeLoss.Options();
8686

8787
/// <summary>
88-
/// A custom <a href="tmpurl_loss">loss</a>.
88+
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
8989
/// </summary>
9090
public IClassificationLoss LossFunction { get; set; }
9191

9292
/// <summary>
93-
/// The <a href="tmpurl_calib">calibrator</a> for producing probabilities. Default is exponential (aka Platt) calibration.
93+
/// The <a href="https://en.wikipedia.org/wiki/Calibration_(statistics)">calibrator</a> for producing probabilities. Default is exponential (aka Platt) calibration.
9494
/// </summary>
9595
[Argument(ArgumentType.AtMostOnce, HelpText = "The calibrator kind to apply to the predictor. Specify null for no calibration", Visibility = ArgumentAttribute.VisibilityType.EntryPointsOnly)]
9696
internal ICalibratorTrainerFactory Calibrator = new PlattCalibratorTrainerFactory();

src/Microsoft.ML.StandardTrainers/Standard/Online/OnlineGradientDescent.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ public sealed class Options : AveragedLinearOptions
5252
internal ISupportRegressionLossFactory RegressionLossFunctionFactory = new SquaredLossFactory();
5353

5454
/// <summary>
55-
/// A custom <a href="tmpurl_loss">loss</a>.
55+
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
5656
/// </summary>
5757
public IRegressionLoss LossFunction { get; set; }
5858

src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs

+8-8
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ public abstract class SdcaTrainerBase<TOptions, TTransformer, TModel> : Stochast
157157
public abstract class OptionsBase : TrainerInputBaseWithWeight
158158
{
159159
/// <summary>
160-
/// The L2 <a href='tmpurl_regularization'>regularization</a> hyperparameter.
160+
/// The L2 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter.
161161
/// </summary>
162162
[Argument(ArgumentType.AtMostOnce, HelpText = "L2 regularizer constant. By default the l2 constant is automatically inferred based on data set.", NullName = "<Auto>", ShortName = "l2, L2Const", SortOrder = 1)]
163163
[TGUI(Label = "L2 Regularizer Constant", SuggestedSweeps = "<Auto>,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2")]
@@ -166,7 +166,7 @@ public abstract class OptionsBase : TrainerInputBaseWithWeight
166166

167167
// REVIEW: make the default positive when we know how to consume a sparse model
168168
/// <summary>
169-
/// The L1 <a href='tmpurl_regularization'>regularization</a> hyperparameter.
169+
/// The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter.
170170
/// </summary>
171171
[Argument(ArgumentType.AtMostOnce, HelpText = "L1 soft threshold (L1/L2). Note that it is easier to control and sweep using the threshold parameter than the raw L1-regularizer constant. By default the l1 threshold is automatically inferred based on data set.",
172172
NullName = "<Auto>", Name = "L1Threshold", ShortName = "l1", SortOrder = 2)]
@@ -1547,7 +1547,7 @@ private protected override BinaryPredictionTransformer<TModelParameters> MakeTra
15471547

15481548
/// <summary>
15491549
/// The <see cref="IEstimator{TTransformer}"/> for training a binary logistic regression classification model using the stochastic dual coordinate ascent method.
1550-
/// The trained model is <a href='tmpurl_calib'>calibrated</a> and can produce probability by feeding the output value of the
1550+
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
15511551
/// linear function to a <see cref="PlattCalibrator"/>.
15521552
/// </summary>
15531553
/// <include file='doc.xml' path='doc/members/member[@name="SDCA_remarks"]/*' />
@@ -1623,7 +1623,7 @@ public sealed class SdcaNonCalibratedBinaryTrainer : SdcaBinaryTrainerBase<Linea
16231623
public sealed class Options : BinaryOptionsBase
16241624
{
16251625
/// <summary>
1626-
/// The custom <a href="tmpurl_loss">loss</a>.
1626+
/// The custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
16271627
/// </summary>
16281628
/// <value>
16291629
/// If unspecified, <see cref="LogLoss"/> will be used.
@@ -1632,7 +1632,7 @@ public sealed class Options : BinaryOptionsBase
16321632
internal ISupportSdcaClassificationLossFactory LossFunctionFactory = new LogLossFactory();
16331633

16341634
/// <summary>
1635-
/// The custom <a href="tmpurl_loss">loss</a>.
1635+
/// The custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
16361636
/// </summary>
16371637
/// <value>
16381638
/// If unspecified, <see cref="LogLoss"/> will be used.
@@ -1776,7 +1776,7 @@ public abstract class SgdBinaryTrainerBase<TModel> :
17761776
public class OptionsBase : TrainerInputBaseWithWeight
17771777
{
17781778
/// <summary>
1779-
/// The L2 weight for <a href='tmpurl_regularization'>regularization</a>.
1779+
/// The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.
17801780
/// </summary>
17811781
[Argument(ArgumentType.AtMostOnce, HelpText = "L2 Regularization constant", ShortName = "l2, L2Weight", SortOrder = 50)]
17821782
[TGUI(Label = "L2 Regularization Constant", SuggestedSweeps = "1e-7,5e-7,1e-6,5e-6,1e-5")]
@@ -1814,7 +1814,7 @@ public class OptionsBase : TrainerInputBaseWithWeight
18141814
public int NumberOfIterations = Defaults.NumberOfIterations;
18151815

18161816
/// <summary>
1817-
/// The initial <a href="tmpurl_lr">learning rate</a> used by SGD.
1817+
/// The initial learning rate used by SGD.
18181818
/// </summary>
18191819
[Argument(ArgumentType.AtMostOnce, HelpText = "Initial learning rate (only used by SGD)", Name = "InitialLearningRate", ShortName = "ilr,lr,InitLearningRate")]
18201820
[TGUI(Label = "Initial Learning Rate (for SGD)")]
@@ -2171,7 +2171,7 @@ private protected override void CheckLabel(RoleMappedData examples, out int weig
21712171

21722172
/// <summary>
21732173
/// The <see cref="IEstimator{TTransformer}"/> for training logistic regression using a parallel stochastic gradient method.
2174-
/// The trained model is <a href='tmpurl_calib'>calibrated</a> and can produce probability by feeding the output value of the
2174+
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
21752175
/// linear function to a <see cref="PlattCalibrator"/>.
21762176
/// </summary>
21772177
/// <remarks>

src/Microsoft.ML.StandardTrainers/Standard/SdcaMulticlass.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ public abstract class SdcaMulticlassTrainerBase<TModel> : SdcaTrainerBase<SdcaMu
4242
public class MulticlassOptions : OptionsBase
4343
{
4444
/// <summary>
45-
/// The custom <a href="tmpurl_loss">loss</a>.
45+
/// The custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
4646
/// </summary>
4747
/// <value>
4848
/// If unspecified, <see cref="LogLoss"/> will be used.

src/Microsoft.ML.StandardTrainers/Standard/SdcaRegression.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ public sealed class SdcaRegressionTrainer : SdcaTrainerBase<SdcaRegressionTraine
3838
public sealed class Options : OptionsBase
3939
{
4040
/// <summary>
41-
/// A custom <a href="tmpurl_loss">loss</a>.
41+
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
4242
/// </summary>
4343
/// <value>
4444
/// Defaults to <see cref="SquaredLoss"/>
@@ -47,7 +47,7 @@ public sealed class Options : OptionsBase
4747
internal ISupportSdcaRegressionLossFactory LossFunctionFactory = new SquaredLossFactory();
4848

4949
/// <summary>
50-
/// A custom <a href="tmpurl_loss">loss</a>.
50+
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
5151
/// </summary>
5252
/// <value>
5353
/// Defaults to <see cref="SquaredLoss"/>

0 commit comments

Comments
 (0)