You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// A custom <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a>.
89
89
/// </summary>
90
90
publicIClassificationLossLossFunction{get;set;}
91
91
92
92
/// <summary>
93
-
/// The <a href="tmpurl_calib">calibrator</a> for producing probabilities. Default is exponential (aka Platt) calibration.
93
+
/// The <a href="https://en.wikipedia.org/wiki/Calibration_(statistics)">calibrator</a> for producing probabilities. Default is exponential (aka Platt) calibration.
94
94
/// </summary>
95
95
[Argument(ArgumentType.AtMostOnce,HelpText="The calibrator kind to apply to the predictor. Specify null for no calibration",Visibility=ArgumentAttribute.VisibilityType.EntryPointsOnly)]
/// The L2 <a href='tmpurl_regularization'>regularization</a> hyperparameter.
160
+
/// The L2 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter.
161
161
/// </summary>
162
162
[Argument(ArgumentType.AtMostOnce,HelpText="L2 regularizer constant. By default the l2 constant is automatically inferred based on data set.",NullName="<Auto>",ShortName="l2, L2Const",SortOrder=1)]
@@ -166,7 +166,7 @@ public abstract class OptionsBase : TrainerInputBaseWithWeight
166
166
167
167
// REVIEW: make the default positive when we know how to consume a sparse model
168
168
/// <summary>
169
-
/// The L1 <a href='tmpurl_regularization'>regularization</a> hyperparameter.
169
+
/// The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter.
170
170
/// </summary>
171
171
[Argument(ArgumentType.AtMostOnce,HelpText="L1 soft threshold (L1/L2). Note that it is easier to control and sweep using the threshold parameter than the raw L1-regularizer constant. By default the l1 threshold is automatically inferred based on data set.",
/// The <see cref="IEstimator{TTransformer}"/> for training a binary logistic regression classification model using the stochastic dual coordinate ascent method.
1550
-
/// The trained model is <a href='tmpurl_calib'>calibrated</a> and can produce probability by feeding the output value of the
1550
+
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
1551
1551
/// linear function to a <see cref="PlattCalibrator"/>.
/// The initial <a href="tmpurl_lr">learning rate</a> used by SGD.
1817
+
/// The initial learning rate used by SGD.
1818
1818
/// </summary>
1819
1819
[Argument(ArgumentType.AtMostOnce,HelpText="Initial learning rate (only used by SGD)",Name="InitialLearningRate",ShortName="ilr,lr,InitLearningRate")]
1820
1820
[TGUI(Label="Initial Learning Rate (for SGD)")]
@@ -2171,7 +2171,7 @@ private protected override void CheckLabel(RoleMappedData examples, out int weig
2171
2171
2172
2172
/// <summary>
2173
2173
/// The <see cref="IEstimator{TTransformer}"/> for training logistic regression using a parallel stochastic gradient method.
2174
-
/// The trained model is <a href='tmpurl_calib'>calibrated</a> and can produce probability by feeding the output value of the
2174
+
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
2175
2175
/// linear function to a <see cref="PlattCalibrator"/>.
0 commit comments