Skip to content

Binary classification samples update #3311

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,44 +1,110 @@
using Microsoft.ML;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptron
{
// In this examples we will use the adult income dataset. The goal is to predict
// if a person's income is above $50K or not, based on demographic information about that person.
// For more details about this dataset, please see https://archive.ics.uci.edu/ml/datasets/adult.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Download and featurize the dataset.
var data = Microsoft.ML.SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);

// Leave out 10% of data for testing.
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Create data training pipeline.
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron(numberOfIterations: 10);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron();

// Fit this pipeline to the training data.
var model = pipeline.Fit(trainTestData.TrainSet);
// Train the model.
var model = pipeline.Fit(trainingData);

// Evaluate how the model is doing on the test data.
var dataWithPredictions = model.Transform(trainTestData.TestSet);
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(dataWithPredictions);
Microsoft.ML.SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed:123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");

// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: False
// Label: False, Prediction: False

// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);

// Expected output:
// Accuracy: 0.86
// AUC: 0.91
// F1 Score: 0.68
// Negative Precision: 0.90
// Negative Recall: 0.91
// Positive Precision: 0.70
// Positive Recall: 0.66
// Accuracy: 0.72
// AUC: 0.79
// F1 Score: 0.68
// Negative Precision: 0.71
// Negative Recall: 0.80
// Positive Precision: 0.74
// Positive Recall: 0.63
}

private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50).Select(x => x ? randomFloat() : randomFloat() + 0.1f).ToArray()
};
}
}

// Example with label and 50 feature values. A data set is a collection of such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}

// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: {metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: {metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}");
}
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
<#@ include file="BinaryClassification.ttinclude"#>
<#+
string ClassName = "AveragedPerceptron";
string Trainer = "AveragedPerceptron";
string TrainerOptions = null;
bool IsCalibrated = false;
bool CacheData = false;

string LabelThreshold = "0.5f";
string DataSepValue = "0.1f";
string OptionsInclude = "";
string Comments= "";

string ExpectedOutputPerInstance = @"// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: False
// Label: False, Prediction: False";

string ExpectedOutput = @"// Expected output:
// Accuracy: 0.72
// AUC: 0.79
// F1 Score: 0.68
// Negative Precision: 0.71
// Negative Recall: 0.80
// Positive Precision: 0.74
// Positive Recall: 0.63";
#>
Original file line number Diff line number Diff line change
@@ -1,28 +1,29 @@
using Microsoft.ML;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptronWithOptions
{
// In this examples we will use the adult income dataset. The goal is to predict
// if a person's income is above $50K or not, based on demographic information about that person.
// For more details about this dataset, please see https://archive.ics.uci.edu/ml/datasets/adult.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for exception tracking and logging,
// as a catalog of available operations and as the source of randomness.
// Setting the seed to a fixed number in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Download and featurize the dataset.
var data = Microsoft.ML.SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);

// Leave out 10% of data for testing.
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
// Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// Define the trainer options.
var options = new AveragedPerceptronTrainer.Options()
// Define trainer options.
var options = new AveragedPerceptronTrainer.Options
{
LossFunction = new SmoothedHingeLoss(),
LearningRate = 0.1f,
Expand All @@ -31,25 +32,90 @@ public static void Example()
NumberOfIterations = 10
};

// Create data training pipeline.
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron(options);

// Fit this pipeline to the training data.
var model = pipeline.Fit(trainTestData.TrainSet);
// Train the model.
var model = pipeline.Fit(trainingData);

// Evaluate how the model is doing on the test data.
var dataWithPredictions = model.Transform(trainTestData.TestSet);
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(dataWithPredictions);
Microsoft.ML.SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
// Create testing data. Use different random seed to make it different from training data.
var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed:123));

// Run the model on test data set.
var transformedTestData = model.Transform(testData);

// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(transformedTestData, reuseRowObject: false).ToList();

// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");

// Expected output:
// Accuracy: 0.86
// AUC: 0.90
// F1 Score: 0.66
// Negative Precision: 0.89
// Negative Recall: 0.93
// Positive Precision: 0.72
// Positive Recall: 0.61
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False

// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);

// Expected output:
// Accuracy: 0.89
// AUC: 0.96
// F1 Score: 0.88
// Negative Precision: 0.87
// Negative Recall: 0.92
// Positive Precision: 0.91
// Positive Recall: 0.85
}

private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count, int seed=0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50).Select(x => x ? randomFloat() : randomFloat() + 0.1f).ToArray()
};
}
}

// Example with label and 50 feature values. A data set is a collection of such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}

// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}

// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: {metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: {metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}");
}
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
<#@ include file="BinaryClassification.ttinclude"#>
<#+
string ClassName="AveragedPerceptronWithOptions";
string Trainer = "AveragedPerceptron";
bool IsCalibrated = false;

string LabelThreshold = "0.5f";
string DataSepValue = "0.1f";
string OptionsInclude = "using Microsoft.ML.Trainers;";
string Comments= "";
bool CacheData = false;

string TrainerOptions = @"AveragedPerceptronTrainer.Options
{
LossFunction = new SmoothedHingeLoss(),
LearningRate = 0.1f,
LazyUpdate = false,
RecencyGain = 0.1f,
NumberOfIterations = 10
}";

string ExpectedOutputPerInstance= @"// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False";

string ExpectedOutput = @"// Expected output:
// Accuracy: 0.89
// AUC: 0.96
// F1 Score: 0.88
// Negative Precision: 0.87
// Negative Recall: 0.92
// Positive Precision: 0.91
// Positive Recall: 0.85";
#>
Loading