-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Redesign DnnCatalog methods API for ease of use and consistency. #4362
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
7b035b8
WIP initial change
ashbhandare 280a878
Changed API design, changed tests and samples to use new API
ashbhandare b0dafb8
Combined DnnCatalog.Options and ImageClassificationEstimator.Options,…
ashbhandare b17c016
Added unit test and sample
ashbhandare 2c0897d
Removed duplicate members in Options class, addresses PR comments
ashbhandare f956a07
Removed preview remark for ImageClassification.
ashbhandare File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
329 changes: 329 additions & 0 deletions
329
docs/samples/Microsoft.ML.Samples/Dynamic/ImageClassification/ImageClassificationDefault.cs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
| ||
using System; | ||
using System.Collections.Generic; | ||
using System.IO; | ||
using System.IO.Compression; | ||
using System.Linq; | ||
using System.Net; | ||
using System.Threading; | ||
using System.Threading.Tasks; | ||
using Microsoft.ML; | ||
using Microsoft.ML.Data; | ||
using Microsoft.ML.Transforms; | ||
using static Microsoft.ML.DataOperationsCatalog; | ||
|
||
namespace Samples.Dynamic | ||
{ | ||
public class ImageClassificationDefault | ||
{ | ||
public static void Example() | ||
{ | ||
string assetsRelativePath = @"../../../assets"; | ||
string assetsPath = GetAbsolutePath(assetsRelativePath); | ||
|
||
var outputMlNetModelFilePath = Path.Combine(assetsPath, "outputs", | ||
"imageClassifier.zip"); | ||
|
||
string imagesDownloadFolderPath = Path.Combine(assetsPath, "inputs", | ||
"images"); | ||
|
||
//Download the image set and unzip | ||
string finalImagesFolderName = DownloadImageSet( | ||
imagesDownloadFolderPath); | ||
string fullImagesetFolderPath = Path.Combine( | ||
imagesDownloadFolderPath, finalImagesFolderName); | ||
|
||
try | ||
{ | ||
|
||
MLContext mlContext = new MLContext(seed: 1); | ||
|
||
//Load all the original images info | ||
IEnumerable<ImageData> images = LoadImagesFromDirectory( | ||
folder: fullImagesetFolderPath, useFolderNameAsLabel: true); | ||
|
||
IDataView shuffledFullImagesDataset = mlContext.Data.ShuffleRows( | ||
mlContext.Data.LoadFromEnumerable(images)); | ||
|
||
shuffledFullImagesDataset = mlContext.Transforms.Conversion | ||
.MapValueToKey("Label") | ||
.Append(mlContext.Transforms.LoadImages("Image", | ||
fullImagesetFolderPath, false, "ImagePath")) | ||
.Fit(shuffledFullImagesDataset) | ||
.Transform(shuffledFullImagesDataset); | ||
|
||
// Split the data 90:10 into train and test sets, train and | ||
// evaluate. | ||
TrainTestData trainTestData = mlContext.Data.TrainTestSplit( | ||
shuffledFullImagesDataset, testFraction: 0.1, seed: 1); | ||
|
||
IDataView trainDataset = trainTestData.TrainSet; | ||
IDataView testDataset = trainTestData.TestSet; | ||
|
||
var pipeline = mlContext.Model.ImageClassification("Image", "Label", validationSet: testDataset) | ||
.Append(mlContext.Transforms.Conversion.MapKeyToValue( | ||
outputColumnName: "PredictedLabel", | ||
inputColumnName: "PredictedLabel")); | ||
|
||
|
||
Console.WriteLine("*** Training the image classification model " + | ||
"with DNN Transfer Learning on top of the selected " + | ||
"pre-trained model/architecture ***"); | ||
|
||
// Measuring training time | ||
var watch = System.Diagnostics.Stopwatch.StartNew(); | ||
|
||
var trainedModel = pipeline.Fit(trainDataset); | ||
|
||
watch.Stop(); | ||
long elapsedMs = watch.ElapsedMilliseconds; | ||
|
||
Console.WriteLine("Training with transfer learning took: " + | ||
(elapsedMs / 1000).ToString() + " seconds"); | ||
|
||
mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema, | ||
"model.zip"); | ||
|
||
ITransformer loadedModel; | ||
DataViewSchema schema; | ||
using (var file = File.OpenRead("model.zip")) | ||
loadedModel = mlContext.Model.Load(file, out schema); | ||
|
||
EvaluateModel(mlContext, testDataset, loadedModel); | ||
|
||
watch = System.Diagnostics.Stopwatch.StartNew(); | ||
|
||
// Predict image class using an in-memory image. | ||
TrySinglePrediction(fullImagesetFolderPath, mlContext, loadedModel); | ||
|
||
watch.Stop(); | ||
elapsedMs = watch.ElapsedMilliseconds; | ||
|
||
Console.WriteLine("Prediction engine took: " + | ||
(elapsedMs / 1000).ToString() + " seconds"); | ||
} | ||
catch (Exception ex) | ||
{ | ||
Console.WriteLine(ex.ToString()); | ||
} | ||
|
||
Console.WriteLine("Press any key to finish"); | ||
Console.ReadKey(); | ||
} | ||
|
||
private static void TrySinglePrediction(string imagesForPredictions, | ||
MLContext mlContext, ITransformer trainedModel) | ||
{ | ||
// Create prediction function to try one prediction | ||
var predictionEngine = mlContext.Model | ||
.CreatePredictionEngine<InMemoryImageData, ImagePrediction>(trainedModel); | ||
|
||
IEnumerable<InMemoryImageData> testImages = LoadInMemoryImagesFromDirectory( | ||
imagesForPredictions, false); | ||
|
||
InMemoryImageData imageToPredict = new InMemoryImageData | ||
{ | ||
Image = testImages.First().Image | ||
}; | ||
|
||
var prediction = predictionEngine.Predict(imageToPredict); | ||
|
||
Console.WriteLine($"Scores : [{string.Join(",", prediction.Score)}], " + | ||
$"Predicted Label : {prediction.PredictedLabel}"); | ||
} | ||
|
||
|
||
private static void EvaluateModel(MLContext mlContext, | ||
IDataView testDataset, ITransformer trainedModel) | ||
{ | ||
Console.WriteLine("Making bulk predictions and evaluating model's " + | ||
"quality..."); | ||
|
||
// Measuring time | ||
var watch2 = System.Diagnostics.Stopwatch.StartNew(); | ||
|
||
IDataView predictions = trainedModel.Transform(testDataset); | ||
var metrics = mlContext.MulticlassClassification.Evaluate(predictions); | ||
|
||
Console.WriteLine($"Micro-accuracy: {metrics.MicroAccuracy}," + | ||
$"macro-accuracy = {metrics.MacroAccuracy}"); | ||
|
||
watch2.Stop(); | ||
long elapsed2Ms = watch2.ElapsedMilliseconds; | ||
|
||
Console.WriteLine("Predicting and Evaluation took: " + | ||
(elapsed2Ms / 1000).ToString() + " seconds"); | ||
} | ||
|
||
public static IEnumerable<ImageData> LoadImagesFromDirectory(string folder, | ||
bool useFolderNameAsLabel = true) | ||
{ | ||
var files = Directory.GetFiles(folder, "*", | ||
searchOption: SearchOption.AllDirectories); | ||
foreach (var file in files) | ||
{ | ||
if (Path.GetExtension(file) != ".jpg") | ||
continue; | ||
|
||
var label = Path.GetFileName(file); | ||
if (useFolderNameAsLabel) | ||
label = Directory.GetParent(file).Name; | ||
else | ||
{ | ||
for (int index = 0; index < label.Length; index++) | ||
{ | ||
if (!char.IsLetter(label[index])) | ||
{ | ||
label = label.Substring(0, index); | ||
break; | ||
} | ||
} | ||
} | ||
|
||
yield return new ImageData() | ||
{ | ||
ImagePath = file, | ||
Label = label | ||
}; | ||
|
||
} | ||
} | ||
|
||
public static IEnumerable<InMemoryImageData> | ||
LoadInMemoryImagesFromDirectory(string folder, | ||
bool useFolderNameAsLabel = true) | ||
{ | ||
var files = Directory.GetFiles(folder, "*", | ||
searchOption: SearchOption.AllDirectories); | ||
foreach (var file in files) | ||
{ | ||
if (Path.GetExtension(file) != ".jpg") | ||
continue; | ||
|
||
var label = Path.GetFileName(file); | ||
if (useFolderNameAsLabel) | ||
label = Directory.GetParent(file).Name; | ||
else | ||
{ | ||
for (int index = 0; index < label.Length; index++) | ||
{ | ||
if (!char.IsLetter(label[index])) | ||
{ | ||
label = label.Substring(0, index); | ||
break; | ||
} | ||
} | ||
} | ||
|
||
yield return new InMemoryImageData() | ||
{ | ||
Image = File.ReadAllBytes(file), | ||
Label = label | ||
}; | ||
|
||
} | ||
} | ||
|
||
public static string DownloadImageSet(string imagesDownloadFolder) | ||
{ | ||
// get a set of images to teach the network about the new classes | ||
|
||
//SINGLE SMALL FLOWERS IMAGESET (200 files) | ||
string fileName = "flower_photos_small_set.zip"; | ||
string url = $"https://mlnetfilestorage.file.core.windows.net/" + | ||
$"imagesets/flower_images/flower_photos_small_set.zip?st=2019-08-" + | ||
$"07T21%3A27%3A44Z&se=2030-08-08T21%3A27%3A00Z&sp=rl&sv=2018-03-" + | ||
$"28&sr=f&sig=SZ0UBX47pXD0F1rmrOM%2BfcwbPVob8hlgFtIlN89micM%3D"; | ||
|
||
Download(url, imagesDownloadFolder, fileName); | ||
UnZip(Path.Combine(imagesDownloadFolder, fileName), imagesDownloadFolder); | ||
|
||
return Path.GetFileNameWithoutExtension(fileName); | ||
} | ||
|
||
public static bool Download(string url, string destDir, string destFileName) | ||
{ | ||
if (destFileName == null) | ||
destFileName = url.Split(Path.DirectorySeparatorChar).Last(); | ||
|
||
Directory.CreateDirectory(destDir); | ||
|
||
string relativeFilePath = Path.Combine(destDir, destFileName); | ||
|
||
if (File.Exists(relativeFilePath)) | ||
{ | ||
Console.WriteLine($"{relativeFilePath} already exists."); | ||
return false; | ||
} | ||
|
||
var wc = new WebClient(); | ||
Console.WriteLine($"Downloading {relativeFilePath}"); | ||
var download = Task.Run(() => wc.DownloadFile(url, relativeFilePath)); | ||
while (!download.IsCompleted) | ||
{ | ||
Thread.Sleep(1000); | ||
Console.Write("."); | ||
} | ||
Console.WriteLine(""); | ||
Console.WriteLine($"Downloaded {relativeFilePath}"); | ||
|
||
return true; | ||
} | ||
|
||
public static void UnZip(String gzArchiveName, String destFolder) | ||
{ | ||
var flag = gzArchiveName.Split(Path.DirectorySeparatorChar) | ||
.Last() | ||
.Split('.') | ||
.First() + ".bin"; | ||
|
||
if (File.Exists(Path.Combine(destFolder, flag))) return; | ||
|
||
Console.WriteLine($"Extracting."); | ||
ZipFile.ExtractToDirectory(gzArchiveName, destFolder); | ||
|
||
File.Create(Path.Combine(destFolder, flag)); | ||
Console.WriteLine(""); | ||
Console.WriteLine("Extracting is completed."); | ||
} | ||
|
||
public static string GetAbsolutePath(string relativePath) | ||
{ | ||
FileInfo _dataRoot = new FileInfo(typeof( | ||
ResnetV2101TransferLearningTrainTestSplit).Assembly.Location); | ||
|
||
string assemblyFolderPath = _dataRoot.Directory.FullName; | ||
|
||
string fullPath = Path.Combine(assemblyFolderPath, relativePath); | ||
|
||
return fullPath; | ||
} | ||
|
||
public class InMemoryImageData | ||
{ | ||
[LoadColumn(0)] | ||
public byte[] Image; | ||
|
||
[LoadColumn(1)] | ||
public string Label; | ||
} | ||
|
||
public class ImageData | ||
{ | ||
[LoadColumn(0)] | ||
public string ImagePath; | ||
|
||
[LoadColumn(1)] | ||
public string Label; | ||
} | ||
|
||
public class ImagePrediction | ||
{ | ||
[ColumnName("Score")] | ||
public float[] Score; | ||
|
||
[ColumnName("PredictedLabel")] | ||
public string PredictedLabel; | ||
} | ||
} | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We need to fix this pattern. This is becoming pervasive in our repo.
It is not recommended to use WebClient. We should use HttpClient instead.
https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient?view=netframework-4.8#remarks #Resolved
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This change is included in another PR #4314, which is failing the CI test intermittently. I would like to make that change separate from this if that's okay.
In reply to: 337696066 [](ancestors = 337696066)