Skip to content

Added tests for new API where components(Loaders/Transforms/Learners) are directly instantiated. #468

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 2, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using Microsoft.ML.Models;
using Microsoft.ML.Runtime;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Runtime.Data;
using Microsoft.ML.Runtime.Learners;
using Microsoft.ML.Runtime.Model;
using System;
using System.IO;
using Xunit;

namespace Microsoft.ML.Scenarios
{
public partial class ScenariosTests
{
[Fact]
public void TrainAndPredictIrisModelUsingDirectInstantiationTest()
{
string dataPath = GetDataPath("iris.txt");
string testDataPath = dataPath;

using (var env = new TlcEnvironment(seed: 1, conc: 1))
{
// Pipeline
var loader = new TextLoader(env,
new TextLoader.Arguments()
{
HasHeader = false,
Column = new[] {
new TextLoader.Column()
{
Name = "Label",
Source = new [] { new TextLoader.Range() { Min = 0, Max = 0} },
Type = DataKind.R4
},
new TextLoader.Column()
{
Name = "SepalLength",
Source = new [] { new TextLoader.Range() { Min = 1, Max = 1} },
Type = DataKind.R4
},
new TextLoader.Column()
{
Name = "SepalWidth",
Source = new [] { new TextLoader.Range() { Min = 2, Max = 2} },
Type = DataKind.R4
},
new TextLoader.Column()
{
Name = "PetalLength",
Source = new [] { new TextLoader.Range() { Min = 3, Max = 3} },
Type = DataKind.R4
},
new TextLoader.Column()
{
Name = "PetalWidth",
Source = new [] { new TextLoader.Range() { Min = 4, Max = 4} },
Type = DataKind.R4
}
}
}, new MultiFileSource(dataPath));

IDataTransform trans = new ConcatTransform(env, loader, "Features",
"SepalLength", "SepalWidth", "PetalLength", "PetalWidth");

// Normalizer is not automatically added though the trainer has 'NormalizeFeatures' On/Auto
trans = NormalizeTransform.CreateMinMaxNormalizer(env, trans, "Features");

// Train
var trainer = new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments());

// Explicity adding CacheDataView since caching is not working though trainer has 'Caching' On/Auto
var cached = new CacheDataView(env, trans, prefetch: null);
var trainRoles = TrainUtils.CreateExamples(cached, label: "Label", feature: "Features");
trainer.Train(trainRoles);

// Get scorer and evaluate the predictions from test data
var pred = trainer.CreatePredictor();
IDataScorerTransform testDataScorer = GetScorer(env, trans, pred, testDataPath);
var metrics = Evaluate(env, testDataScorer);
CompareMatrics(metrics);

// Create prediction engine and test predictions
var model = env.CreatePredictionEngine<IrisData, IrisPrediction>(testDataScorer);
ComparePredictions(model);

// Get feature importance i.e. weight vector
var summary = ((MulticlassLogisticRegressionPredictor)pred).GetSummaryInKeyValuePairs(trainRoles.Schema);
Assert.Equal(7.757867, Convert.ToDouble(summary[0].Value), 5);
}
}

private void ComparePredictions(PredictionEngine<IrisData, IrisPrediction> model)
{
IrisPrediction prediction = model.Predict(new IrisData()
{
SepalLength = 3.3f,
SepalWidth = 1.6f,
PetalLength = 0.2f,
PetalWidth = 5.1f,
});

Assert.Equal(1, prediction.PredictedLabels[0], 2);
Assert.Equal(0, prediction.PredictedLabels[1], 2);
Assert.Equal(0, prediction.PredictedLabels[2], 2);

prediction = model.Predict(new IrisData()
{
SepalLength = 3.1f,
SepalWidth = 5.5f,
PetalLength = 2.2f,
PetalWidth = 6.4f,
});

Assert.Equal(0, prediction.PredictedLabels[0], 2);
Assert.Equal(0, prediction.PredictedLabels[1], 2);
Assert.Equal(1, prediction.PredictedLabels[2], 2);

prediction = model.Predict(new IrisData()
{
SepalLength = 3.1f,
SepalWidth = 2.5f,
PetalLength = 1.2f,
PetalWidth = 4.4f,
});

Assert.Equal(.2, prediction.PredictedLabels[0], 1);
Assert.Equal(.8, prediction.PredictedLabels[1], 1);
Assert.Equal(0, prediction.PredictedLabels[2], 2);
}

private void CompareMatrics(ClassificationMetrics metrics)
{
Assert.Equal(.98, metrics.AccuracyMacro);
Assert.Equal(.98, metrics.AccuracyMicro, 2);
Assert.Equal(.06, metrics.LogLoss, 2);
Assert.InRange(metrics.LogLossReduction, 94, 96);
Assert.Equal(1, metrics.TopKAccuracy);

Assert.Equal(3, metrics.PerClassLogLoss.Length);
Assert.Equal(0, metrics.PerClassLogLoss[0], 1);
Assert.Equal(.1, metrics.PerClassLogLoss[1], 1);
Assert.Equal(.1, metrics.PerClassLogLoss[2], 1);

ConfusionMatrix matrix = metrics.ConfusionMatrix;
Assert.Equal(3, matrix.Order);
Assert.Equal(3, matrix.ClassNames.Count);
Assert.Equal("0", matrix.ClassNames[0]);
Assert.Equal("1", matrix.ClassNames[1]);
Assert.Equal("2", matrix.ClassNames[2]);

Assert.Equal(50, matrix[0, 0]);
Assert.Equal(50, matrix["0", "0"]);
Assert.Equal(0, matrix[0, 1]);
Assert.Equal(0, matrix["0", "1"]);
Assert.Equal(0, matrix[0, 2]);
Assert.Equal(0, matrix["0", "2"]);

Assert.Equal(0, matrix[1, 0]);
Assert.Equal(0, matrix["1", "0"]);
Assert.Equal(48, matrix[1, 1]);
Assert.Equal(48, matrix["1", "1"]);
Assert.Equal(2, matrix[1, 2]);
Assert.Equal(2, matrix["1", "2"]);

Assert.Equal(0, matrix[2, 0]);
Assert.Equal(0, matrix["2", "0"]);
Assert.Equal(1, matrix[2, 1]);
Assert.Equal(1, matrix["2", "1"]);
Assert.Equal(49, matrix[2, 2]);
Assert.Equal(49, matrix["2", "2"]);
}

private ClassificationMetrics Evaluate(IHostEnvironment env, IDataView scoredData)
{
var dataEval = TrainUtils.CreateExamplesOpt(scoredData, label: "Label", feature: "Features");

// Evaluate.
// It does not work. It throws error "Failed to find 'Score' column" when Evaluate is called
//var evaluator = new MultiClassClassifierEvaluator(env, new MultiClassClassifierEvaluator.Arguments() { OutputTopKAcc = 3 });

var evaluator = new MultiClassMamlEvaluator(env, new MultiClassMamlEvaluator.Arguments() { OutputTopKAcc = 3 });
var metricsDic = evaluator.Evaluate(dataEval);

return ClassificationMetrics.FromMetrics(env, metricsDic["OverallMetrics"], metricsDic["ConfusionMatrix"])[0];
}

private IDataScorerTransform GetScorer(IHostEnvironment env, IDataView transforms, IPredictor pred, string testDataPath = null)
{
using (var ch = env.Start("Saving model"))
using (var memoryStream = new MemoryStream())
{
var trainRoles = TrainUtils.CreateExamples(transforms, label: "Label", feature: "Features");

// Model cannot be saved with CacheDataView
TrainUtils.SaveModel(env, ch, memoryStream, pred, trainRoles);
memoryStream.Position = 0;
using (var rep = RepositoryReader.Open(memoryStream, ch))
{
IDataLoader testPipe = ModelFileUtils.LoadLoader(env, rep, new MultiFileSource(testDataPath), true);
RoleMappedData testRoles = TrainUtils.CreateExamples(testPipe, label: "Label", feature: "Features");
return ScoreUtils.GetScorer(pred, testRoles, env, testRoles.Schema);
}
}
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using Microsoft.ML.Models;
using Microsoft.ML.Runtime;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Runtime.Data;
using Microsoft.ML.Runtime.FastTree;
using Microsoft.ML.Runtime.Internal.Calibration;
using Microsoft.ML.Runtime.Model;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Xunit;

namespace Microsoft.ML.Scenarios
{
public partial class ScenariosTests
{
[Fact]
public void TrainAndPredictSentimentModelWithDirectionInstantiationTest()
{
var dataPath = GetDataPath(SentimentDataPath);
var testDataPath = GetDataPath(SentimentTestPath);

using (var env = new TlcEnvironment(seed: 1, conc: 1))
{
// Pipeline
var loader = new TextLoader(env,
new TextLoader.Arguments()
{
Separator = "tab",
HasHeader = true,
Column = new[]
{
new TextLoader.Column()
{
Name = "Label",
Source = new [] { new TextLoader.Range() { Min=0, Max=0} },
Type = DataKind.Num
},

new TextLoader.Column()
{
Name = "SentimentText",
Source = new [] { new TextLoader.Range() { Min=1, Max=1} },
Type = DataKind.Text
}
}
}, new MultiFileSource(dataPath));

var trans = TextTransform.Create(env, new TextTransform.Arguments()
{
Column = new TextTransform.Column
{
Name = "Features",
Source = new[] { "SentimentText" }
},
KeepDiacritics = false,
KeepPunctuations = false,
TextCase = Runtime.TextAnalytics.TextNormalizerTransform.CaseNormalizationMode.Lower,
OutputTokens = true,
StopWordsRemover = new Runtime.TextAnalytics.PredefinedStopWordsRemoverFactory(),
VectorNormalizer = TextTransform.TextNormKind.L2,
CharFeatureExtractor = new NgramExtractorTransform.NgramExtractorArguments() { NgramLength = 3, AllLengths = false },
WordFeatureExtractor = new NgramExtractorTransform.NgramExtractorArguments() { NgramLength = 2, AllLengths = true },
},
loader);

// Train
var trainer = new FastTreeBinaryClassificationTrainer(env, new FastTreeBinaryClassificationTrainer.Arguments()
{
NumLeaves = 5,
NumTrees = 5,
MinDocumentsInLeafs = 2
});

var trainRoles = TrainUtils.CreateExamples(trans, label: "Label", feature: "Features");
trainer.Train(trainRoles);

// Get scorer and evaluate the predictions from test data
var pred = trainer.CreatePredictor();
IDataScorerTransform testDataScorer = GetScorer(env, trans, pred, testDataPath);
var metrics = EvaluateBinary(env, testDataScorer);
ValidateBinaryMetrics(metrics);

// Create prediction engine and test predictions
var model = env.CreateBatchPredictionEngine<SentimentData, SentimentPrediction>(testDataScorer);
var sentiments = GetTestData();
var predictions = model.Predict(sentiments, false);
Assert.Equal(2, predictions.Count());
Assert.True(predictions.ElementAt(0).Sentiment.IsFalse);
Assert.True(predictions.ElementAt(1).Sentiment.IsTrue);

// Get feature importance based on feature gain during training
var summary = ((FeatureWeightsCalibratedPredictor)pred).GetSummaryInKeyValuePairs(trainRoles.Schema);
Assert.Equal(1.0, (double)summary[0].Value, 1);
}
}

private BinaryClassificationMetrics EvaluateBinary(IHostEnvironment env, IDataView scoredData)
{
var dataEval = TrainUtils.CreateExamplesOpt(scoredData, label: "Label", feature: "Features");

// Evaluate.
// It does not work. It throws error "Failed to find 'Score' column" when Evaluate is called
//var evaluator = new BinaryClassifierEvaluator(env, new BinaryClassifierEvaluator.Arguments());

var evaluator = new BinaryClassifierMamlEvaluator(env, new BinaryClassifierMamlEvaluator.Arguments());
var metricsDic = evaluator.Evaluate(dataEval);

return BinaryClassificationMetrics.FromMetrics(env, metricsDic["OverallMetrics"], metricsDic["ConfusionMatrix"])[0];
}
}
}