Skip to content

NetCore3.1 generates different test result issue #5047

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
maml.exe Train tr=MultiClassLogisticRegression{maxiter=100 t=- stat=+} loader=TextLoader{col=Label:TX:4 col=Features:R4:0-3 sep=,} data=%Data% out=%Output% seed=1 xf=Term{col=Label}
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning optimization
num vars: 15
improvement criterion: Mean Improvement
L1 regularization selected 10 of 15 weights.
Model trained with 150 training examples.
Residual Deviance: 132.4371
Null Deviance: 329.58368
AIC: 152.4371
Not training a calibrator because it is not needed.
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
LbfgsMaximumEntropyMulticlassTrainer bias and non-zero weights
Iris-setosa+(Bias) 2.2171915
Iris-versicolor+(Bias) 0.76931
Iris-virginica+(Bias) -2.9864972
Iris-setosa+f3 -3.179184
Iris-setosa+f2 -2.8718326
Iris-setosa+f1 0.5830593
Iris-versicolor+f1 -0.68959576
Iris-virginica+f3 3.145027
Iris-virginica+f2 1.882819
Iris-virginica+f0 0.0037482954

*** MODEL STATISTICS SUMMARY ***
Count of training examples: 150
Residual Deviance: 132.4371
Null Deviance: 329.58368
AIC: 152.4371
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
maml.exe CV tr=LdSvm{iter=1000} threads=- dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 8 rows with missing feature/label values
Training calibrator.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 8 rows with missing feature/label values
Training calibrator.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 134 | 0 | 1.0000
negative || 12 | 208 | 0.9455
||======================
Precision || 0.9178 | 1.0000 |
OVERALL 0/1 ACCURACY: 0.966102
LOG LOSS/instance: 0.121887
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.872636
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 101 | 4 | 0.9619
negative || 5 | 219 | 0.9777
||======================
Precision || 0.9528 | 0.9821 |
OVERALL 0/1 ACCURACY: 0.972644
LOG LOSS/instance: 0.160647
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.822185
AUC: 0.984694

OVERALL RESULTS
---------------------------------------
AUC: 0.989565 (0.0049)
Accuracy: 0.969373 (0.0033)
Positive precision: 0.935319 (0.0175)
Positive recall: 0.980952 (0.0190)
Negative precision: 0.991031 (0.0090)
Negative recall: 0.961567 (0.0161)
Log-loss: 0.141267 (0.0194)
Log-loss reduction: 0.847411 (0.0252)
F1 Score: 0.957244 (0.0001)
AUPRC: 0.986457 (0.0034)

---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
LdSvm
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC /iter Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.989565 0.969373 0.935319 0.980952 0.991031 0.961567 0.141267 0.847411 0.957244 0.986457 1000 LdSvm %Data% %Output% 99 0 0 maml.exe CV tr=LdSvm{iter=1000} threads=- dout=%Output% data=%Data% seed=1 /iter:1000

Loading