forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
Double backwards for nn
gchanan edited this page Jun 29, 2017
·
20 revisions
Function | Supports Double Backwards? | Type |
---|---|---|
torch.nn._functions.thnn.auto.ELU | no | |
torch.nn._functions.thnn.auto.Hardtanh | no | |
torch.nn._functions.thnn.activation.RReLU | no | |
torch.nn._functions.thnn.activation.SELU | yes | |
torch.nn._functions.dropout.Dropout | yes | |
torch.nn._functions.dropout.FeatureDropout | yes | |
torch.nn._functions.rnn.CudnnRNN | ||
torch.nn._functions.thnn.auto.TemporalRowConvolution | no | |
torch.nn._functions.thnn.auto.SpatialUpSamplingBilinear | no | |
torch.nn._functions.thnn.auto.Square | no | |
torch.nn._functions.thnn.auto.Softshrink | no | |
torch.nn._functions.thnn.auto.Softmax | no | |
torch.nn._functions.thnn.auto.SpatialConvolutionLocal | no | |
torch.nn._functions.thnn.auto.L1Loss | no | |
torch.nn._functions.thnn.auto.MarginCriterion | no | |
torch.nn._functions.thnn.auto.VolumetricDilatedMaxPooling | no | |
torch.nn._functions.thnn.auto.SpatialUpSamplingNearest | no | |
torch.nn._functions.thnn.auto.MSELoss | no | |
torch.nn._functions.thnn.auto.MultiLabelMarginLoss | no | |
torch.nn._functions.thnn.auto.LogSoftmax | no | |
torch.nn._functions.thnn.auto._BCELoss | no | |
torch.nn._functions.thnn.loss.BCELoss | no | |
torch.nn._functions.thnn.auto.VolumetricDilatedConvolution | no | |
torch.nn._functions.thnn.auto.ReplicationPad3d | no | |
torch.nn._functions.thnn.auto.GatedLinear | no | |
torch.nn._functions.thnn.auto.Tanh | no | |
torch.nn._functions.thnn.auto.KLDivLoss | no | |
torch.nn._functions.thnn.auto.VolumetricUpSamplingNearest | no | |
torch.nn._functions.thnn.auto.VolumetricUpSamplingTrilinear | no | |
torch.nn._functions.thnn.auto.ReplicationPad2d | no | |
torch.nn._functions.thnn.auto.DilatedConv2d | no | |
torch.nn._functions.thnn.auto.SpatialDepthWiseConvolution | no | |
torch.nn._functions.thnn.auto.Hardshrink | no | |
torch.nn._functions.thnn.auto.LogSigmoid | no | |
torch.nn._functions.thnn.auto.Sqrt | no | |
torch.nn._functions.thnn.auto.SmoothL1Loss | no | |
torch.nn._functions.thnn.auto.NLLLoss2d | no | |
torch.nn._functions.thnn.auto.SoftMarginLoss | no | |
torch.nn._functions.thnn.auto.SpatialFullConvolutionMap | no | |
torch.nn._functions.thnn.auto.SpatialSubSampling | no | |
torch.nn._functions.thnn.auto.SpatialConvolutionMap | no | |
torch.nn._functions.thnn.auto.VolumetricFractionalMaxPooling | no | |
torch.nn._functions.thnn.auto.Abs | no | |
torch.nn._functions.thnn.auto.NLLLoss | no | |
torch.nn._functions.thnn.auto.ReflectionPad2d | no | |
torch.nn._functions.thnn.auto.Softplus | no | |
torch.nn._functions.thnn.auto.TemporalSubSampling | no | |
torch.nn._functions.thnn.auto.SpatialFractionalMaxPooling | no | |
torch.nn._functions.thnn.auto.MultiMarginLoss | no | |
torch.nn._functions.thnn.auto.L1Cost | no | |
torch.nn._functions.thnn.auto.Sigmoid | no | |
torch.nn._functions.thnn.normalization.CrossMapLRN2d | ||
torch.nn._functions.thnn.activation.PReLU | ||
torch.nn._functions.thnn.activation.Softmin | no | |
torch.nn._functions.thnn.activation.Threshold | yes | |
torch.nn._functions.thnn.activation.LeakyReLU | yes | |
torch.nn._functions.thnn.pooling.MaxPool1d | ||
torch.nn._functions.thnn.pooling.MaxPool2d | ||
torch.nn._functions.thnn.pooling.MaxPool3d | ||
torch.nn._functions.thnn.pooling.MaxUnpool2d | ||
torch.nn._functions.thnn.pooling.MaxUnpool3d | ||
torch.nn._functions.thnn.pooling.FractionalMaxPool2d | ||
torch.nn._functions.thnn.pooling.AvgPool2d | no | |
torch.nn._functions.thnn.pooling.AvgPool3d | no | |
torch.nn._functions.thnn.pooling.AdaptiveMaxPool1d | ||
torch.nn._functions.thnn.pooling.AdaptiveMaxPool2d | ||
torch.nn._functions.thnn.pooling.AdaptiveAvgPool1d | ||
torch.nn._functions.thnn.pooling.AdaptiveAvgPool2d | ||
torch.nn._functions.thnn.sparse.Embedding | ||
torch.nn._functions.thnn.sparse.EmbeddingBag | ||
torch.nn._functions.thnn.upsampling.UpsamplingNearest2d | no | |
torch.nn._functions.thnn.upsampling.UpsamplingNearest3d | no | |
torch.nn._functions.thnn.upsampling.UpsamplingTrilinear3d | no | |
torch.nn._functions.thnn.upsampling.UpsamplingBilinear2d | no | |
torch.nn._functions.thnn.rnnFusedPointwise.GRUFused | ||
torch.nn._functions.thnn.rnnFusedPointwise.LSTMFused | ||
torch.nn._functions.linear.Linear | yes | |
torch.nn._functions.linear.Bilinear | yes | |
torch.nn._functions.conv.ConvNd | ||
torch.nn._functions.padding.ConstantPad2d | yes | |
torch.nn._functions.activation.Softsign | ||
torch.nn._functions.loss.CosineEmbeddingLoss | no | |
torch.nn._functions.loss.HingeEmbeddingLoss | no | |
torch.nn._functions.loss.MarginRankingLoss | no | |
torch.nn.parallel._functions.Broadcast | ||
torch.nn.parallel._functions.Gather | ||
torch.nn.parallel._functions.Scatter |
gregsss