Skip to content

Eval bug: DeepSeek-R1-UD-Q2_K_XL output broken #13305

@joesixpaq

Description

@joesixpaq

Name and Version

I experience gibberish with DeepSeek-R1-UD-Q2_K_XL by unsloth (checked with SHA256)

In my case, this gibberish output started with e1e8e09.

I eventually managed to isolate the latest still working commit: 6f67cf1

The most recent tested commit which is still not working is 9f2da58

Image

Operating systems

Linux

GGML backends

CUDA

Hardware

1x RTX 3090, Intel Xeon E5-2640 v3, 1TB RAM

Models

DeepSeek-R1-UD-Q2_K_XL by unsloth

Problem description & steps to reproduce

Senseless output with partially Chinese characters

First Bad Commit

e1e8e09

Relevant log output

#!/bin/bash

if [ -t 0 ]; then
    CPU0="--physcpubind=16,17,18,19,20,21,22,23 --membind=0"
    CPU1="--physcpubind=8,10,12,14,24,26,28,30 --membind=1"

    declare -a MODEL_ALIASES=(
        "DeepSeek R1 Q2_K_XL"
        "Qwen3-32B-UD-Q4_K_XL"
    )
    
    declare -a MODEL_PATHS=(
        "/mnt/AI/LLM/DeepSeek-R1-UD-Q2_K_XL/DeepSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf"
        "/mnt/AI/LLM/Qwen3-32B-UD-Q4_K_XL/Qwen3-32B-UD-Q4_K_XL.gguf"
    )

    # CPU Selection
    echo "Select CPU configuration:"
    select cpu_opt in "CPU0" "CPU1"; do
        case $cpu_opt in
            "CPU0") SELECTED_CPU="$CPU0"; break;;
            "CPU1") SELECTED_CPU="$CPU1"; break;;
            *) echo "Invalid option, please choose 1 or 2";;
        esac
    done
    
    # Model Selection
    echo "Select model:"
    select model_alias in "${MODEL_ALIASES[@]}"; do
        if [[ -n "$model_alias" ]] && (( REPLY >= 1 && REPLY <= ${#MODEL_ALIASES[@]} )); then
            MODEL_PATH="${MODEL_PATHS[$((REPLY-1))]}"
            break
        else
            echo "Invalid selection. Please enter a number between 1 and ${#MODEL_ALIASES[@]}."
        fi
    done
    
    read -p "Server port [8000]: " PORT
    PORT=${PORT:-8000}
    read -p "Context size [16384]: " CTX
    CTX=${CTX:-16384}
    read -p "GPU layers [0]: " NGL
    NGL=${NGL:-0}

    SERVER_PARAMS="
    --port $PORT
    --model $MODEL_PATH
    --n-gpu-layers $NGL
    --ctx-size $CTX
    --no-mmap
    --temp 0.6
    --cache-type-k q4_0
    --threads 8
    --predict 16384
    --host 0.0.0.0
    --batch-size 4096
    --device CUDA0
    "
    # Start server with line buffering
    
    # COMMIT="e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5" # FIRST BROKEN
    # COMMIT="6f67cf1f480926391ad75ff746e0a021214bf70c" # LAST GOOD
    
    # COMMIT="8afbd968182909cf93fb15959fc867b6dd3adb53" # GOOD newest 04.05.2025 for Qwen3 but not DS-R1

    COMMIT="9f2da5871f4bbd205b8a3b952cdc76283218d595" 

    PATH2APP="$HOME/workspace/LLAMA_CPP/$COMMIT/llama.cpp/build/bin/llama-server"
    echo $PATH2APP
    numactl $SELECTED_CPU stdbuf -oL "$PATH2APP" $SERVER_PARAMS > server.log 2>&1 &
    
    SERVER_PID=$!

    # Monitor log for startup completion
    echo "Waiting for server to start..."
    (
        tail -f server.log | while IFS= read -r line; do
            # Print line to terminal
            echo "$line"
            # Check for magic string
            if [[ "$line" == *"starting the main loop"* ]]; then
                pkill -P $$ tail  # Kill tail process
                exit 0
            fi
        done
    ) & TAIL_PID=$!

    # Wait for monitoring process
    wait $TAIL_PID 2>/dev/null

    # Open browser if successful
    if [ $? -eq 0 ]; then
        echo "Server ready! Launching browser..."
        xdg-open "http://localhost:$PORT" 2>/dev/null
    else
        echo "ERROR: Server failed to start"
        kill $SERVER_PID 2>/dev/null
        exit 1
    fi

    # Cleanup
    wait $SERVER_PID
    rm server.log

else
    gnome-terminal -- bash -c "$0; exec bash"
fi

--

/home/xyz/workspace/LLAMA_CPP/9f2da5871f4bbd205b8a3b952cdc76283218d595/llama.cpp/build/bin/llama-server
Waiting for server to start...
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 1: Quadro M2000, compute capability 5.2, VMM: yes
build: 5276 (9f2da587) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 32

system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CUDA : ARCHS = 500,610,700,750,800 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 0.0.0.0, port: 8001, http threads: 31
main: loading model
srv    load_model: loading model '/mnt/AI/LLM/DeepSeek-R1-UD-Q2_K_XL/DeepSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) - 17426 MiB free
llama_model_loader: additional 4 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 48 key-value pairs and 1025 tensors from /mnt/AI/LLM/DeepSeek-R1-UD-Q2_K_XL/DeepSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 BF16
llama_model_loader: - kv   3:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   4:                         general.size_label str              = 256x20B
llama_model_loader: - kv   5:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   6:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv   7:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv   8:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv   9:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  10:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  11:          deepseek2.attention.head_count_kv u32              = 128
llama_model_loader: - kv  12:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  13: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  15:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  16:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  17:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  18:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  19:             deepseek2.attention.key_length u32              = 192
llama_model_loader: - kv  20:           deepseek2.attention.value_length u32              = 128
llama_model_loader: - kv  21:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  22:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  23:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  24:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  25:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  26:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  27:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  28:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  29:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  30: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  31: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  32:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  33:                         tokenizer.ggml.pre str              = deepseek-v3
llama_model_loader: - kv  34:                      tokenizer.ggml.tokens arr[str,129280]  = ["<|begin▁of▁sentence|>", "<�...
llama_model_loader: - kv  35:                  tokenizer.ggml.token_type arr[i32,129280]  = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  36:                      tokenizer.ggml.merges arr[str,127741]  = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
llama_model_loader: - kv  37:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  38:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  39:            tokenizer.ggml.padding_token_id u32              = 128815
llama_model_loader: - kv  40:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  41:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  42:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  43:               general.quantization_version u32              = 2
llama_model_loader: - kv  44:                          general.file_type u32              = 10
llama_model_loader: - kv  45:                                   split.no u16              = 0
llama_model_loader: - kv  46:                        split.tensors.count i32              = 1025
llama_model_loader: - kv  47:                                split.count u16              = 5
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q2_K:  171 tensors
llama_model_loader: - type q3_K:    3 tensors
llama_model_loader: - type q4_K:  306 tensors
llama_model_loader: - type q6_K:  184 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q2_K - Medium
print_info: file size   = 211.03 GiB (2.70 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 819
load: token to piece cache size = 0.8223 MB
print_info: arch             = deepseek2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 163840
print_info: n_embd           = 7168
print_info: n_layer          = 61
print_info: n_head           = 128
print_info: n_head_kv        = 128
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 192
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 24576
print_info: n_embd_v_gqa     = 16384
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 18432
print_info: n_expert         = 256
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = yarn
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 671B
print_info: model params     = 671.03 B
print_info: general.name     = DeepSeek R1 BF16
print_info: n_layer_dense_lead   = 3
print_info: n_lora_q             = 1536
print_info: n_lora_kv            = 512
print_info: n_embd_head_k_mla    = 0
print_info: n_embd_head_v_mla    = 0
print_info: n_ff_exp             = 2048
print_info: n_expert_shared      = 1
print_info: expert_weights_scale = 2.5
print_info: expert_weights_norm  = 1
print_info: expert_gating_func   = sigmoid
print_info: rope_yarn_log_mul    = 0.1000
print_info: vocab type       = BPE
print_info: n_vocab          = 129280
print_info: n_merges         = 127741
print_info: BOS token        = 0 '<|begin▁of▁sentence|>'
print_info: EOS token        = 1 '<|end▁of▁sentence|>'
print_info: EOT token        = 1 '<|end▁of▁sentence|>'
print_info: PAD token        = 128815 '<|PAD▁TOKEN|>'
print_info: LF token         = 201 'Ċ'
print_info: FIM PRE token    = 128801 '<|fim▁begin|>'
print_info: FIM SUF token    = 128800 '<|fim▁hole|>'
print_info: FIM MID token    = 128802 '<|fim▁end|>'
print_info: EOG token        = 1 '<|end▁of▁sentence|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/62 layers to GPU
load_tensors:    CUDA_Host model buffer size = 215601.95 MiB
load_tensors:          CPU model buffer size =   497.11 MiB
....................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 16384
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch       = 4096
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 0.025
llama_context: n_ctx_per_seq (16384) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.49 MiB
llama_kv_cache_unified: kv_size = 16384, type_k = 'q4_0', type_v = 'f16', n_layer = 61, can_shift = 1, padding = 32
llama_kv_cache_unified:        CPU KV buffer size = 44408.00 MiB
llama_kv_cache_unified: KV self size  = 44408.00 MiB, K (q4_0): 13176.00 MiB, V (f16): 31232.00 MiB
llama_context:      CUDA0 compute buffer size =  5017.50 MiB
llama_context:  CUDA_Host compute buffer size =   112.01 MiB
llama_context: graph nodes  = 4842
llama_context: graph splits = 1148 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 16384
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- else %}{{'<|Assistant|>' + message['content'] + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- endif %}{%- endfor %}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}, example_format: 'You are a helpful assistant

<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://0.0.0.0:8001 - starting the main loop

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions