Skip to content

Eval bug: llama-server crash after 2 messages following commit 9070365 #13329

@firefox42

Description

@firefox42

Name and Version

./build/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
Device 0: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
Device 1: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
version: 5287 (9070365)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

HIP

Hardware

AMD Ryzen 7 5700X + 2x AMD Instinct MI100

Models

Qwen3-30B-A3B-Q8_0.gguf from https://huggingface.co/unsloth/Qwen3-30B-A3B-GGUF/blob/main/Qwen3-30B-A3B-Q8_0.gguf

Problem description & steps to reproduce

I compile llama.cpp for ROCm using HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx908 -DCMAKE_BUILD_TYPE=Release -DGGML_HIP_ROCWMMA_FATTN=ON && cmake --build build --config Release -- -j 8

Then, I load Qwen3-30B-A3B-Q8_0.gguf using ./build/bin/llama-server -m models/gguf/Qwen3-30B-A3B-Q8_0.gguf -a Qwen3-30B-A3B-Q8_0.gguf -ngl 100 -sm layer -b 4096 -c 16384 --host [IP] --port [port] --api-key [key]

Next, I send a message the llama-server via the OpenAI API, specifically through Open-Webui. The first message seems to generate a response as expected.

Finally, I send a second message that continues the conversation, and it crashes llama-server.

Using the built-in webui lets me send 2 messages before the 3rd one exhibits the same behavior. Commit a7366fa did not resolve this issue.

First Bad Commit

9070365

Relevant log output

./build/bin/llama-server -m models/gguf/Qwen3-30B-A3B-Q8_0.gguf -a Qwen3-30B-A3B-Q8_0.gguf -ngl 100 -sm layer -b 4096 -c 16384 --host [ip] --port [port] --api-key [key]
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
  Device 0: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
  Device 1: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
build: 5287 (90703650) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 8

system_info: n_threads = 8 (n_threads_batch = 8) / 8 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: [ip], port: [port], http threads: 7
main: loading model
srv    load_model: loading model 'models/gguf/Qwen3-30B-A3B-Q8_0.gguf'
llama_model_load_from_file_impl: using device ROCm0 (AMD Instinct MI100) - 32732 MiB free
llama_model_load_from_file_impl: using device ROCm1 (AMD Instinct MI100) - 32732 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from models/gguf/Qwen3-30B-A3B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3moe
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-30B-A3B
llama_model_loader: - kv   3:                           general.basename str              = Qwen3-30B-A3B
llama_model_loader: - kv   4:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   5:                         general.size_label str              = 30B-A3B
llama_model_loader: - kv   6:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   7:                       qwen3moe.block_count u32              = 48
llama_model_loader: - kv   8:                    qwen3moe.context_length u32              = 40960
llama_model_loader: - kv   9:                  qwen3moe.embedding_length u32              = 2048
llama_model_loader: - kv  10:               qwen3moe.feed_forward_length u32              = 6144
llama_model_loader: - kv  11:              qwen3moe.attention.head_count u32              = 32
llama_model_loader: - kv  12:           qwen3moe.attention.head_count_kv u32              = 4
llama_model_loader: - kv  13:                    qwen3moe.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  14:  qwen3moe.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  15:                 qwen3moe.expert_used_count u32              = 8
llama_model_loader: - kv  16:              qwen3moe.attention.key_length u32              = 128
llama_model_loader: - kv  17:            qwen3moe.attention.value_length u32              = 128
llama_model_loader: - kv  18:                      qwen3moe.expert_count u32              = 128
llama_model_loader: - kv  19:        qwen3moe.expert_feed_forward_length u32              = 768
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  25:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  26:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  27:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  28:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  29:               general.quantization_version u32              = 2
llama_model_loader: - kv  30:                          general.file_type u32              = 7
llama_model_loader: - kv  31:                      quantize.imatrix.file str              = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv  32:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv  33:             quantize.imatrix.entries_count i32              = 384
llama_model_loader: - kv  34:              quantize.imatrix.chunks_count i32              = 32
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type q8_0:  338 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 30.25 GiB (8.51 BPW) 
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3moe
print_info: vocab_only       = 0
print_info: n_ctx_train      = 40960
print_info: n_embd           = 2048
print_info: n_layer          = 48
print_info: n_head           = 32
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 8
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 6144
print_info: n_expert         = 128
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 40960
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 30B.A3B
print_info: model params     = 30.53 B
print_info: general.name     = Qwen3-30B-A3B
print_info: n_ff_exp         = 768
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors:        ROCm0 model buffer size = 15803.55 MiB
load_tensors:        ROCm1 model buffer size = 14854.57 MiB
load_tensors:   CPU_Mapped model buffer size =   315.30 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 16384
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch       = 4096
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (16384) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context:  ROCm_Host  output buffer size =     0.58 MiB
llama_kv_cache_unified: kv_size = 16384, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1, padding = 32
llama_kv_cache_unified:      ROCm0 KV buffer size =   800.00 MiB
llama_kv_cache_unified:      ROCm1 KV buffer size =   736.00 MiB
llama_kv_cache_unified: KV self size  = 1536.00 MiB, K (f16):  768.00 MiB, V (f16):  768.00 MiB
llama_context: pipeline parallelism enabled (n_copies=4)
llama_context:      ROCm0 compute buffer size =  1192.01 MiB
llama_context:      ROCm1 compute buffer size =  1192.02 MiB
llama_context:  ROCm_Host compute buffer size =   132.02 MiB
llama_context: graph nodes  = 3126
llama_context: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 16384
main: model loaded
main: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {{- messages[0].content + '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for forward_message in messages %}
    {%- set index = (messages|length - 1) - loop.index0 %}
    {%- set message = messages[index] %}
    {%- set tool_start = '<tool_response>' %}
    {%- set tool_start_length = tool_start|length %}
    {%- set start_of_message = message.content[:tool_start_length] %}
    {%- set tool_end = '</tool_response>' %}
    {%- set tool_end_length = tool_end|length %}
    {%- set start_pos = (message.content|length) - tool_end_length %}
    {%- if start_pos < 0 %}
        {%- set start_pos = 0 %}
    {%- endif %}
    {%- set end_of_message = message.content[start_pos:] %}
    {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
        {%- set ns.multi_step_tool = false %}
        {%- set ns.last_query_index = index %}
    {%- endif %}
{%- endfor %}
{%- for message in messages %}
    {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
        {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
    {%- elif message.role == "assistant" %}
        {%- set content = message.content %}
        {%- set reasoning_content = '' %}
        {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
            {%- set reasoning_content = message.reasoning_content %}
        {%- else %}
            {%- if '</think>' in message.content %}
                {%- set content = (message.content.split('</think>')|last).lstrip('\n') %}
                {%- set reasoning_content = (message.content.split('</think>')|first).rstrip('\n') %}
                {%- set reasoning_content = (reasoning_content.split('<think>')|last).lstrip('\n') %}
            {%- endif %}
        {%- endif %}
        {%- if loop.index0 > ns.last_query_index %}
            {%- if loop.last or (not loop.last and reasoning_content) %}
                {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
            {%- else %}
                {{- '<|im_start|>' + message.role + '\n' + content }}
            {%- endif %}
        {%- else %}
            {{- '<|im_start|>' + message.role + '\n' + content }}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {{- message.content }}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
    {%- if enable_thinking is defined and enable_thinking is false %}
        {{- '<think>\n\n</think>\n\n' }}
    {%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://[ip]:[port] - starting the main loop
srv  update_slots: all slots are idle
srv  log_server_r: request: GET /v1/models [ip] 200
srv  log_server_r: request: GET /v1/models [ip] 200
srv  log_server_r: request: GET /v1/models [ip] 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 13
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 13, n_tokens = 13, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 13, n_tokens = 13
slot      release: id  0 | task 0 | stop processing: n_past = 863, truncated = 0
slot print_timing: id  0 | task 0 | 
prompt eval time =     154.13 ms /    13 tokens (   11.86 ms per token,    84.34 tokens per second)
       eval time =   14397.40 ms /   851 tokens (   16.92 ms per token,    59.11 tokens per second)
      total time =   14551.53 ms /   864 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /v1/chat/completions [ip] 200
srv  log_server_r: request: GET /v1/models [ip] 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 852 | processing task
slot update_slots: id  0 | task 852 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 319
slot update_slots: id  0 | task 852 | kv cache rm [12, end)
slot update_slots: id  0 | task 852 | prompt processing progress, n_past = 319, n_tokens = 307, progress = 0.962382
slot update_slots: id  0 | task 852 | prompt done, n_past = 319, n_tokens = 307
llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2073: GGML_ASSERT(!ggml_cuda_should_use_mmq(src0->type, cc, ne11) || ne00 % MATRIX_ROW_PADDING == 0) failed
Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
Aborted (core dumped)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions