-
Notifications
You must be signed in to change notification settings - Fork 12.8k
Description
Name and Version
./build/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
Device 0: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
Device 1: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
version: 5287 (9070365)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
HIP
Hardware
AMD Ryzen 7 5700X + 2x AMD Instinct MI100
Models
Qwen3-30B-A3B-Q8_0.gguf from https://huggingface.co/unsloth/Qwen3-30B-A3B-GGUF/blob/main/Qwen3-30B-A3B-Q8_0.gguf
Problem description & steps to reproduce
I compile llama.cpp for ROCm using HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx908 -DCMAKE_BUILD_TYPE=Release -DGGML_HIP_ROCWMMA_FATTN=ON && cmake --build build --config Release -- -j 8
Then, I load Qwen3-30B-A3B-Q8_0.gguf using ./build/bin/llama-server -m models/gguf/Qwen3-30B-A3B-Q8_0.gguf -a Qwen3-30B-A3B-Q8_0.gguf -ngl 100 -sm layer -b 4096 -c 16384 --host [IP] --port [port] --api-key [key]
Next, I send a message the llama-server via the OpenAI API, specifically through Open-Webui. The first message seems to generate a response as expected.
Finally, I send a second message that continues the conversation, and it crashes llama-server.
Using the built-in webui lets me send 2 messages before the 3rd one exhibits the same behavior. Commit a7366fa did not resolve this issue.
First Bad Commit
Relevant log output
./build/bin/llama-server -m models/gguf/Qwen3-30B-A3B-Q8_0.gguf -a Qwen3-30B-A3B-Q8_0.gguf -ngl 100 -sm layer -b 4096 -c 16384 --host [ip] --port [port] --api-key [key]
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
Device 0: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
Device 1: AMD Instinct MI100, gfx908:sramecc+:xnack- (0x908), VMM: no, Wave Size: 64
build: 5287 (90703650) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 8
system_info: n_threads = 8 (n_threads_batch = 8) / 8 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: [ip], port: [port], http threads: 7
main: loading model
srv load_model: loading model 'models/gguf/Qwen3-30B-A3B-Q8_0.gguf'
llama_model_load_from_file_impl: using device ROCm0 (AMD Instinct MI100) - 32732 MiB free
llama_model_load_from_file_impl: using device ROCm1 (AMD Instinct MI100) - 32732 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from models/gguf/Qwen3-30B-A3B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-30B-A3B
llama_model_loader: - kv 3: general.basename str = Qwen3-30B-A3B
llama_model_loader: - kv 4: general.quantized_by str = Unsloth
llama_model_loader: - kv 5: general.size_label str = 30B-A3B
llama_model_loader: - kv 6: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 7: qwen3moe.block_count u32 = 48
llama_model_loader: - kv 8: qwen3moe.context_length u32 = 40960
llama_model_loader: - kv 9: qwen3moe.embedding_length u32 = 2048
llama_model_loader: - kv 10: qwen3moe.feed_forward_length u32 = 6144
llama_model_loader: - kv 11: qwen3moe.attention.head_count u32 = 32
llama_model_loader: - kv 12: qwen3moe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 13: qwen3moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 14: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: qwen3moe.expert_used_count u32 = 8
llama_model_loader: - kv 16: qwen3moe.attention.key_length u32 = 128
llama_model_loader: - kv 17: qwen3moe.attention.value_length u32 = 128
llama_model_loader: - kv 18: qwen3moe.expert_count u32 = 128
llama_model_loader: - kv 19: qwen3moe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 28: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - kv 30: general.file_type u32 = 7
llama_model_loader: - kv 31: quantize.imatrix.file str = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 32: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 384
llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 32
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q8_0: 338 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 30.25 GiB (8.51 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3moe
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 2048
print_info: n_layer = 48
print_info: n_head = 32
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 6144
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 30B.A3B
print_info: model params = 30.53 B
print_info: general.name = Qwen3-30B-A3B
print_info: n_ff_exp = 768
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 11 ','
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: ROCm0 model buffer size = 15803.55 MiB
load_tensors: ROCm1 model buffer size = 14854.57 MiB
load_tensors: CPU_Mapped model buffer size = 315.30 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 16384
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch = 4096
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (16384) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: ROCm_Host output buffer size = 0.58 MiB
llama_kv_cache_unified: kv_size = 16384, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1, padding = 32
llama_kv_cache_unified: ROCm0 KV buffer size = 800.00 MiB
llama_kv_cache_unified: ROCm1 KV buffer size = 736.00 MiB
llama_kv_cache_unified: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
llama_context: pipeline parallelism enabled (n_copies=4)
llama_context: ROCm0 compute buffer size = 1192.01 MiB
llama_context: ROCm1 compute buffer size = 1192.02 MiB
llama_context: ROCm_Host compute buffer size = 132.02 MiB
llama_context: graph nodes = 3126
llama_context: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 16384
main: model loaded
main: chat template, chat_template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].role == 'system' %}
{{- messages[0].content + '\n\n' }}
{%- endif %}
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0].role == 'system' %}
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for forward_message in messages %}
{%- set index = (messages|length - 1) - loop.index0 %}
{%- set message = messages[index] %}
{%- set tool_start = '<tool_response>' %}
{%- set tool_start_length = tool_start|length %}
{%- set start_of_message = message.content[:tool_start_length] %}
{%- set tool_end = '</tool_response>' %}
{%- set tool_end_length = tool_end|length %}
{%- set start_pos = (message.content|length) - tool_end_length %}
{%- if start_pos < 0 %}
{%- set start_pos = 0 %}
{%- endif %}
{%- set end_of_message = message.content[start_pos:] %}
{%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
{%- set ns.multi_step_tool = false %}
{%- set ns.last_query_index = index %}
{%- endif %}
{%- endfor %}
{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{%- set content = message.content %}
{%- set reasoning_content = '' %}
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
{%- set reasoning_content = message.reasoning_content %}
{%- else %}
{%- if '</think>' in message.content %}
{%- set content = (message.content.split('</think>')|last).lstrip('\n') %}
{%- set reasoning_content = (message.content.split('</think>')|first).rstrip('\n') %}
{%- set reasoning_content = (reasoning_content.split('<think>')|last).lstrip('\n') %}
{%- endif %}
{%- endif %}
{%- if loop.index0 > ns.last_query_index %}
{%- if loop.last or (not loop.last and reasoning_content) %}
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- if message.tool_calls %}
{%- for tool_call in message.tool_calls %}
{%- if (loop.first and content) or (not loop.first) %}
{{- '\n' }}
{%- endif %}
{%- if tool_call.function %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{%- if tool_call.arguments is string %}
{{- tool_call.arguments }}
{%- else %}
{{- tool_call.arguments | tojson }}
{%- endif %}
{{- '}\n</tool_call>' }}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- if enable_thinking is defined and enable_thinking is false %}
{{- '<think>\n\n</think>\n\n' }}
{%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://[ip]:[port] - starting the main loop
srv update_slots: all slots are idle
srv log_server_r: request: GET /v1/models [ip] 200
srv log_server_r: request: GET /v1/models [ip] 200
srv log_server_r: request: GET /v1/models [ip] 200
srv params_from_: Chat format: Content-only
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 13
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 13, n_tokens = 13, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 13, n_tokens = 13
slot release: id 0 | task 0 | stop processing: n_past = 863, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 154.13 ms / 13 tokens ( 11.86 ms per token, 84.34 tokens per second)
eval time = 14397.40 ms / 851 tokens ( 16.92 ms per token, 59.11 tokens per second)
total time = 14551.53 ms / 864 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions [ip] 200
srv log_server_r: request: GET /v1/models [ip] 200
srv params_from_: Chat format: Content-only
slot launch_slot_: id 0 | task 852 | processing task
slot update_slots: id 0 | task 852 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 319
slot update_slots: id 0 | task 852 | kv cache rm [12, end)
slot update_slots: id 0 | task 852 | prompt processing progress, n_past = 319, n_tokens = 307, progress = 0.962382
slot update_slots: id 0 | task 852 | prompt done, n_past = 319, n_tokens = 307
llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2073: GGML_ASSERT(!ggml_cuda_should_use_mmq(src0->type, cc, ne11) || ne00 % MATRIX_ROW_PADDING == 0) failed
Could not attach to process. If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user. For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
Aborted (core dumped)