-
Notifications
You must be signed in to change notification settings - Fork 12.8k
Closed
Labels
bug-unconfirmedcritical severityUsed to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)stale
Description
What happened?
I am running on Rocm with 4 x Instinct MI100.
Only when using --split-mode row
mode I get a Address boundary error.
llama.cpp was working when I had a XGMI GPU Bridge working with the 4 cards, but now the bridge is broken and am trying to run this only via PCIe.
My setup currrent passes Rocm validation suite.
llama-server --host 0.0.0.0 --p…' terminated by signal SIGSEGV (Address boundary error)
Name and Version
llama-cli --version
version: 3889 (b6d6c52)
built with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu
llama-server --version
version: 3889 (b6d6c52)
built with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu
What operating system are you seeing the problem on?
Linux
Relevant log output
gml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 ROCm devices:
Device 0: AMD Instinct MI100, compute capability 9.0, VMM: no
Device 1: AMD Instinct MI100, compute capability 9.0, VMM: no
Device 2: AMD Instinct MI100, compute capability 9.0, VMM: no
Device 3: AMD Instinct MI100, compute capability 9.0, VMM: no
build: 3889 (b6d6c528) with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu
system info: n_threads = 16, n_threads_batch = 16, total_threads = 32
system_info: n_threads = 16 (n_threads_batch = 16) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
main: HTTP server is listening, hostname: 0.0.0.0, port: 40480, http threads: 31
main: loading model
llama_model_loader: loaded meta data with 33 key-value pairs and 724 tensors from models/Meta-Llama-3.1-70B-Instruct-Q4_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 70B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 80
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 8192
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 28672
llama_model_loader: - kv 13: llama.attention.head_count u32 = 64
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 15
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = /models_out/Meta-Llama-3.1-70B-Instru...
llama_model_loader: - kv 30: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 560
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 125
llama_model_loader: - type f32: 162 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type q4_K: 440 tensors
llama_model_loader: - type q5_K: 40 tensors
llama_model_loader: - type q6_K: 80 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_layer = 80
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 28672
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 70B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 70.55 B
llm_load_print_meta: model size = 40.32 GiB (4.91 BPW)
llm_load_print_meta: general.name = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 1.02 MiB
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: ROCm_Split buffer size = 40217.12 MiB
llm_load_tensors: ROCm0 buffer size = 5.05 MiB
llm_load_tensors: CPU buffer size = 1064.62 MiB
.................................................................................................
llama_new_context_with_model: n_ctx = 131072
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: ROCm0 KV buffer size = 11520.00 MiB
llama_new_context_with_model: KV self size = 11520.00 MiB, K (q4_0): 5760.00 MiB, V (q4_0): 5760.00 MiB
llama_new_context_with_model: ROCm_Host output buffer size = 0.98 MiB
llama_new_context_with_model: ROCm0 compute buffer size = 448.00 MiB
llama_new_context_with_model: ROCm_Host compute buffer size = 272.01 MiB
llama_new_context_with_model: graph nodes = 2247
llama_new_context_with_model: graph splits = 2
llama_init_from_gpt_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
fish: Job 1, 'llama-server --host 0.0.0.0 --p…' terminated by signal SIGSEGV (Address boundary error)
Metadata
Metadata
Assignees
Labels
bug-unconfirmedcritical severityUsed to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)stale