Skip to content

Bug: Row Split Mode - Segmentation fault after model load on ROCm multi-gpu #9761

@thamwangjun

Description

@thamwangjun

What happened?

I am running on Rocm with 4 x Instinct MI100.
Only when using --split-mode row mode I get a Address boundary error.
llama.cpp was working when I had a XGMI GPU Bridge working with the 4 cards, but now the bridge is broken and am trying to run this only via PCIe.
My setup currrent passes Rocm validation suite.

llama-server --host 0.0.0.0 --p…' terminated by signal SIGSEGV (Address boundary error)

Name and Version

llama-cli --version
version: 3889 (b6d6c52)
built with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu

llama-server --version
version: 3889 (b6d6c52)
built with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu

What operating system are you seeing the problem on?

Linux

Relevant log output

gml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 ROCm devices:
  Device 0: AMD Instinct MI100, compute capability 9.0, VMM: no
  Device 1: AMD Instinct MI100, compute capability 9.0, VMM: no
  Device 2: AMD Instinct MI100, compute capability 9.0, VMM: no
  Device 3: AMD Instinct MI100, compute capability 9.0, VMM: no
build: 3889 (b6d6c528) with cc (GCC) 14.2.1 20240910 for x86_64-pc-linux-gnu
system info: n_threads = 16, n_threads_batch = 16, total_threads = 32

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 40480, http threads: 31
main: loading model
llama_model_loader: loaded meta data with 33 key-value pairs and 724 tensors from models/Meta-Llama-3.1-70B-Instruct-Q4_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Meta-Llama-3.1
llama_model_loader: - kv   5:                         general.size_label str              = 70B
llama_model_loader: - kv   6:                            general.license str              = llama3.1
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 80
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 8192
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 28672
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 64
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                          general.file_type u32              = 15
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  27:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - kv  29:                      quantize.imatrix.file str              = /models_out/Meta-Llama-3.1-70B-Instru...
llama_model_loader: - kv  30:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  31:             quantize.imatrix.entries_count i32              = 560
llama_model_loader: - kv  32:              quantize.imatrix.chunks_count i32              = 125
llama_model_loader: - type  f32:  162 tensors
llama_model_loader: - type q8_0:    2 tensors
llama_model_loader: - type q4_K:  440 tensors
llama_model_loader: - type q5_K:   40 tensors
llama_model_loader: - type q6_K:   80 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 8192
llm_load_print_meta: n_layer          = 80
llm_load_print_meta: n_head           = 64
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 28672
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 70B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 70.55 B
llm_load_print_meta: model size       = 40.32 GiB (4.91 BPW) 
llm_load_print_meta: general.name     = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size =    1.02 MiB
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: ROCm_Split buffer size = 40217.12 MiB
llm_load_tensors:      ROCm0 buffer size =     5.05 MiB
llm_load_tensors:        CPU buffer size =  1064.62 MiB
.................................................................................................
llama_new_context_with_model: n_ctx      = 131072
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      ROCm0 KV buffer size = 11520.00 MiB
llama_new_context_with_model: KV self size  = 11520.00 MiB, K (q4_0): 5760.00 MiB, V (q4_0): 5760.00 MiB
llama_new_context_with_model:  ROCm_Host  output buffer size =     0.98 MiB
llama_new_context_with_model:      ROCm0 compute buffer size =   448.00 MiB
llama_new_context_with_model:  ROCm_Host compute buffer size =   272.01 MiB
llama_new_context_with_model: graph nodes  = 2247
llama_new_context_with_model: graph splits = 2
llama_init_from_gpt_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
fish: Job 1, 'llama-server --host 0.0.0.0 --p…' terminated by signal SIGSEGV (Address boundary error)

Metadata

Metadata

Assignees

No one assigned

    Labels

    bug-unconfirmedcritical severityUsed to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)stale

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions