Skip to content
Merged
117 changes: 34 additions & 83 deletions convert-gptneox-h5-to-gguf.py → convert-gptneox-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
from transformers import AutoTokenizer

# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py


def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
Expand All @@ -34,6 +36,7 @@ def bytes_to_unicode():
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))


def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
Expand All @@ -44,6 +47,7 @@ def count_model_parts(dir_model: str) -> int:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts


if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
Expand All @@ -58,7 +62,7 @@ def count_model_parts(dir_model: str) -> int:
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#

# map from ftype to string
ftype_str = ["f32", "f16"]

Expand All @@ -67,6 +71,7 @@ def count_model_parts(dir_model: str) -> int:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))

sys.exit(1)

fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
Expand All @@ -77,30 +82,30 @@ def count_model_parts(dir_model: str) -> int:
hparams = json.load(f)

if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
print("Model architecture not supported: " + hparams["architectures"][0])

sys.exit()

# get number of model parts
num_parts = count_model_parts(dir_model)

gguf_writer = gguf.GGUFWriter.open(fname_out)
llm_arch = "gptneox"
gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)

print("gguf: get model metadata")

llm_arch = "gptneox"
block_count = hparams["num_hidden_layers"]

gguf_writer.add_architecture(llm_arch)
gguf_writer.add_architecture()
gguf_writer.add_name(last_dir)
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_block_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])

# TOKENIZATION

Expand All @@ -124,14 +129,14 @@ def count_model_parts(dir_model: str) -> int:

print("gguf: get gpt2 tokenizer vocab")

vocab_size = len( tokenizer_json["model"]["vocab"] )
vocab_size = len(tokenizer_json["model"]["vocab"])

# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)

reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
byte_decoder = {v: k for k, v in byte_encoder.items()}

for i in range(vocab_size):
if i in reverse_vocab:
Expand All @@ -146,8 +151,9 @@ def count_model_parts(dir_model: str) -> int:
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
padding_token = f"[PAD{i}]".encode("utf8")
text = bytearray(padding_token)
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)

tokens.append(text)

gguf_writer.add_token_list(tokens)
Expand Down Expand Up @@ -201,7 +207,7 @@ def count_model_parts(dir_model: str) -> int:
)

for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")

for name in model_part.keys():
Expand All @@ -223,11 +229,12 @@ def count_model_parts(dir_model: str) -> int:
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
print("Can not map tensor '" + name + "'")
sys.exit()

n_dims = len(data.shape)
data_dtype = data.dtype
old_dtype = data_dtype

# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
Expand All @@ -241,77 +248,21 @@ def count_model_parts(dir_model: str) -> int:
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data_dtype = np.float16

data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))

data = data.astype(data_dtype)

gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
gguf_writer.add_tensor(name, data)


print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensor metadata")
gguf_writer.write_ti_data_to_file()

# tensor data
print("gguf: convert and write tensor data")

if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)

for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")

for name in model_part.keys():
data = model_part[name]

old_dtype = data.dtype

# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue

# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)

data = data.squeeze().numpy()

# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()

n_dims = len(data.shape)
data_dtype = data.dtype

# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data = data.astype(np.float32)

# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)

# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)

print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))

gguf_writer.write_tensor_to_file(data)
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()

gguf_writer.close()


print("gguf: model successfully exported to '" + fname_out + "'" )
print("gguf: model successfully exported to '" + fname_out + "'")
print("")
Loading