Skip to content

compress/flate: improve decompression speed #38324

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
277 changes: 277 additions & 0 deletions src/compress/flate/gen_inflate.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
// formats.

//go:build generate
// +build generate

//go:generate go run $GOFILE
//go:generate go fmt inflate_gen.go

package main

import (
"os"
"strings"
)

func main() {
f, err := os.Create("inflate_gen.go")
if err != nil {
panic(err)
}
defer f.Close()
types := []string{"*bytes.Buffer", "*bytes.Reader", "*bufio.Reader", "*strings.Reader", "Reader"}
names := []string{"BytesBuffer", "BytesReader", "BufioReader", "StringsReader", "GenericReader"}
imports := []string{"bytes", "bufio", "strings", "math/bits"}
f.WriteString(`// Code generated by go generate gen_inflate.go. DO NOT EDIT.

package flate

import (
`)

for _, imp := range imports {
f.WriteString("\t\"" + imp + "\"\n")
}
f.WriteString(")\n\n")

template := `

// $FUNCNAME$ decodes a single Huffman block from f.
// f.r must be a $TYPE$.
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively. If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
func (f *decompressor) $FUNCNAME$() {
const (
stateInit = iota // Zero value must be stateInit
stateDict
)
fr := f.r.($TYPE$)

// Optimization. Compiler isn't smart enough to keep f.b, f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// dict reference and reassign b, nb back to f on return.
fnb, fb, dict := f.nb, f.b, &f.dict
switch f.stepState {
case stateInit:
goto readLiteral
case stateDict:
goto copyHistory
}

readLiteral:
// Read literal and/or (length, distance) according to RFC section 3.2.3.
{
var v int
{
// Inlined v, err := f.huffSym(f.hl)
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(f.hl.maxRead)
for {
for fnb < n {
c, err := fr.ReadByte()
if err != nil {
f.b, f.nb = fb, fnb
f.err = noEOF(err)
return
}
f.roffset++
fb |= uint32(c) << (fnb & 31)
fnb += 8
}
chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
n = uint(chunk & huffmanCountMask)
}
if n <= fnb {
if n == 0 {
f.b, f.nb = fb, fnb
f.err = CorruptInputError(f.roffset)
return
}
fb = fb >> (n & 31)
fnb = fnb - n
v = int(chunk >> huffmanValueShift)
break
}
}
}
var length int
switch {
case v < 256:
dict.writeByte(byte(v))
if dict.availWrite() == 0 {
f.toRead = dict.readFlush()
f.step = (*decompressor).$FUNCNAME$
f.stepState = stateInit
f.b, f.nb = fb, fnb
return
}
goto readLiteral
case v == 256:
f.b, f.nb = fb, fnb
f.finishBlock()
return
// otherwise, reference to older data
case v < 265:
// No extra bits
length = v - (257 - 3)
case v < maxNumLit:
val := decCodeToLen[(v - 257)]
length = int(val.length) + 3
n := uint(val.extra)
for fnb < n {
c, err := fr.ReadByte()
if err != nil {
f.b, f.nb = fb, fnb
f.err = err
return
}
f.roffset++
fb |= uint32(c) << (fnb&31)
fnb += 8
}
length += int(fb & bitMask32[n])
fb >>= n & 31
fnb -= n
default:
f.err = CorruptInputError(f.roffset)
f.b, f.nb = fb, fnb
return
}
var dist uint32
if f.hd == nil {
for fnb < 5 {
c, err := fr.ReadByte()
if err != nil {
f.b, f.nb = fb, fnb
f.err = err
return
}
f.roffset++
fb |= uint32(c) << (fnb&31)
fnb += 8
}
dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
fb >>= 5
fnb -= 5
} else {
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(f.hd.maxRead)
for {
for fnb < n {
c, err := fr.ReadByte()
if err != nil {
f.b, f.nb = fb, fnb
f.err = noEOF(err)
return
}
f.roffset++
fb |= uint32(c) << (fnb & 31)
fnb += 8
}
chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
n = uint(chunk & huffmanCountMask)
}
if n <= fnb {
if n == 0 {
f.b, f.nb = fb, fnb
f.err = CorruptInputError(f.roffset)
return
}
fb = fb >> (n & 31)
fnb = fnb - n
dist = uint32(chunk >> huffmanValueShift)
break
}
}
}
switch {
case dist < 4:
dist++
case dist < maxNumDist:
nb := uint(dist-2) >> 1
// have 1 bit in bottom of dist, need nb more.
extra := (dist & 1) << (nb & 31)
for fnb < nb {
c, err := fr.ReadByte()
if err != nil {
f.b, f.nb = fb, fnb
f.err = err
return
}
f.roffset++
fb |= uint32(c) << (fnb&31)
fnb += 8
}
extra |= fb & bitMask32[nb]
fb >>= nb & 31
fnb -= nb
dist = 1<<((nb+1)&31) + 1 + extra
default:
f.b, f.nb = fb, fnb
f.err = CorruptInputError(f.roffset)
return
}
// No check on length; encoding can be prescient.
if dist > uint32(dict.histSize()) {
f.b, f.nb = fb, fnb
f.err = CorruptInputError(f.roffset)
return
}
f.copyLen, f.copyDist = length, int(dist)
goto copyHistory
}
copyHistory:
// Perform a backwards copy according to RFC section 3.2.3.
{
cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
if cnt == 0 {
cnt = dict.writeCopy(f.copyDist, f.copyLen)
}
f.copyLen -= cnt
if dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = dict.readFlush()
f.step = (*decompressor).$FUNCNAME$ // We need to continue this work
f.stepState = stateDict
f.b, f.nb = fb, fnb
return
}
goto readLiteral
}
// Not reached
}

`
for i, t := range types {
s := strings.Replace(template, "$FUNCNAME$", "huffman"+names[i], -1)
s = strings.Replace(s, "$TYPE$", t, -1)
f.WriteString(s)
}
f.WriteString("func (f *decompressor) huffmanBlockDecoder() func() {\n")
f.WriteString("\tswitch f.r.(type) {\n")
for i, t := range types {
f.WriteString("\t\tcase " + t + ":\n")
f.WriteString("\t\t\treturn f.huffman" + names[i] + "\n")
}
f.WriteString("\t\tdefault:\n")
f.WriteString("\t\t\treturn f.huffmanGenericReader")
f.WriteString("\t}\n}\n")
}
Loading