Based on Karpathy's observation:
"I find that recently I end up using all of the models and all the time. One aspect is the curiosity of who gets what, but the other is that for a lot of problems they have this 'NP Complete' nature to them, where coming up with a solution is significantly harder than verifying a candidate solution. So your best performance will come from just asking all the models, and then getting them to come to a consensus."
This plugin for the llm
package implements a model consortium system with iterative refinement and response synthesis. It orchestrates multiple language models to collaboratively solve complex problems through structured dialogue, evaluation, and arbitration.
flowchart TD
A[Start] --> B[Get Model Responses]
B --> C[Synthesize Responses]
C --> D{Check Confidence}
D -- Confidence ≥ Threshold --> E[Return Final Result]
D -- Confidence < Threshold --> F{Max Iterations Reached?}
F -- No --> G[Prepare Next Iteration]
G --> B
F -- Yes --> E
- Multi-Model Orchestration: Coordinate responses from multiple models in parallel.
- Iterative Refinement: Automatically refine output until a confidence threshold is achieved.
- Advanced Arbitration: Uses a designated arbiter model to synthesize and evaluate responses.
- Database Logging: SQLite-backed logging of all interactions.
- Configurable Parameters: Adjustable confidence thresholds, iteration limits, and model selection.
- Flexible Model Instance Counts: Specify individual instance counts via the syntax
model:count
. - Conversation Continuation: Continue previous conversations using the
-c
or--cid
flags, just like with standardllm
models. (New in v0.3.2)
You can define different numbers of instances per model by appending :count
to the model name. For example:
"o3-mini:1"
runs 1 instance of o3-mini."gpt-4o:2"
runs 2 instances of gpt-4o."gemini-2:3"
runs 3 instances of gemini-2. (If no count is specified, a default instance count (default: 1) is used.)
First, get llm:
Using uv
:
uv tool install llm
Using pipx
:
pipx install llm
Then install the consortium plugin:
llm install llm-consortium
# Or to install directly from this repo
# llm install -e .
The consortium
command now defaults to the run
subcommand for concise usage.
Basic usage:
llm consortium "What are the key considerations for AGI safety?"
Or, if you have saved a consortium model (e.g., named my-consortium
):
llm -m my-consortium "What are the key considerations for AGI safety?"
This command will:
- Send your prompt to multiple models in parallel (using the specified instance counts, if provided).
- Gather responses along with analysis and confidence ratings.
- Use an arbiter model to synthesize these responses.
- Iterate to refine the answer until a specified confidence threshold or maximum iteration count is reached.
After running an initial prompt with a saved consortium model, you can continue the conversation:
To continue the most recent conversation:
# Initial prompt
llm -m my-consortium "Tell me about the planet Mars."
# Follow-up
llm -c "How long does it take to get there?"
To continue a specific conversation:
# Initial prompt (note the conversation ID, e.g., 01jscjy50ty4ycsypbq6h4ywhh)
llm -m my-consortium "Tell me about Jupiter."
# Follow-up using the ID
llm -c --cid 01jscjy50ty4ycsypbq6h4ywhh "What are its major moons?"
-m, --model
: Model to include in the consortium for therun
command. Usemodel:count
for instance counts (default models used byrun
:claude-3-opus-20240229
,claude-3-sonnet-20240229
,gpt-4
,gemini-pro
).--arbiter
: The arbiter model (default:claude-3-opus-20240229
).--confidence-threshold
: Minimum required confidence (default:0.8
).--max-iterations
: Maximum rounds of iterations (default:3
).--min-iterations
: Minimum iterations to perform (default:1
).--system
: Custom system prompt.--output
: Save detailed results to a JSON file.--stdin/--no-stdin
: Append additional input from stdin (default: enabled).--raw
: Output raw responses from both the arbiter and individual models (default: enabled).
Advanced example using the run
command:
llm consortium "Your complex query" \
-m o3-mini:1 \
-m gpt-4o:2 \
-m gemini-2:3 \
--arbiter gemini-2 \
--confidence-threshold 1 \
--max-iterations 4 \
--min-iterations 3 \
--output results.json
You can save a consortium configuration as a model for reuse. This allows you to quickly recall a set of model parameters in subsequent queries.
llm consortium save my-consortium \
--model claude-3-opus-20240229 \
--model gpt-4 \
--arbiter claude-3-opus-20240229 \
--confidence-threshold 0.9 \
--max-iterations 5 \
--min-iterations 1 \
--system "Your custom system prompt"
Once saved, you can invoke your custom consortium like this:
llm -m my-consortium "What are the key considerations for AGI safety?"
And continue conversations using -c
or --cid
as shown above.
Use the create_consortium
helper to configure an orchestrator in your Python code. For example:
from llm_consortium import create_consortium
orchestrator = create_consortium(
models=["o3-mini:1", "gpt-4o:2", "gemini-2:3"],
confidence_threshold=1,
max_iterations=4,
min_iterations=3,
arbiter="gemini-2",
raw=True
)
result = orchestrator.orchestrate("Your prompt here")
print(f"Synthesized Response: {result['synthesis']['synthesis']}")
(Note: Programmatic conversation continuation requires manual handling of the conversation object or history.)
MIT License
Developed as part of the LLM ecosystem and inspired by Andrej Karpathy’s insights on collaborative model consensus.
- v0.3.2 (Upcoming):
- Added conversation continuation support using
-c
and--cid
flags. - Improved error handling for arbiter response parsing (
KeyError: confidence
). - Updated tests for conversation handling.
- Added conversation continuation support using
- v0.3.1:
- Introduced the
model:count
syntax for flexible model instance allocation. - Improved confidence calculation and logging.
- Updated consortium configuration management.
- Introduced the