Skip to content

Tf parameter learning #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,4 @@ Author: Ingo Feinerer [aut, cre] (<https://orcid.org/0000-0001-7656-8338>),
Maintainer: Ingo Feinerer <[email protected]>
Repository: CRAN
Date/Publication: 2018-12-21 13:55:26 UTC
RoxygenNote: 6.1.1
4 changes: 4 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,10 @@ export("as.DocumentTermMatrix",
"weightTfIdf",
"weightBin",
"weightSMART",
"weightSMART2",
"LearnTf",
"LearnWeightingParams",
"DocumentTermMatrix.TF",
"writeCorpus",
"XMLSource",
"XMLTextDocument",
Expand Down
75 changes: 75 additions & 0 deletions R/matrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,50 @@ function(x, control = list())
.TermDocumentMatrix(m, control$weighting)
}

LearnTf <- function(x, control = list())
{
tflist <- tm_parLapply(unname(content(x)), termFreq, control)
names(tflist) <- names(x)
TF <- rbindlist(lapply(seq_along(tflist),
ith.tf.data.table,
tflist = tflist))
TF[, doc_id := factor(doc_id)]
TF[, term := factor(term)]
setkeyv(TF, c("doc_id", "term"))
return(TF)
}

ith.tf.data.table <- function(tflist, i)
{
if(length(tflist[[i]]) < 1)
NULL
else
data.table(doc_id = names(tflist)[i],
term = names(tflist[[i]]),
freq = tflist[[i]])
}

TF.to.vector <- function(TF, id)
{
tf <- TF[doc_id == id, freq]
names(tf) <- TF[doc_id == id, term]
return(tf)
}

data.table.to.tflist <- function(TF)
{
lapply(TF[, unique(doc_id)],
TF.to.vector,
TF = TF)
}

LearnWeightingParams <- function(TF, control = list())
{
m <- TermDocumentMatrix.TF(TF, control = control)
return(list(docfreq = row_sums(m > 0),
ndoc = nDocs(m)))
}

TermDocumentMatrix.PCorpus <-
TermDocumentMatrix.VCorpus <-
function(x, control = list())
Expand All @@ -167,6 +211,37 @@ function(x, control = list())
.TermDocumentMatrix(m, control$weighting)
}

TermDocumentMatrix.TF <-
function(TF, control = list())
{
if(!is.null(control$dictionary))
TF <- TF[term %in% control$dictionary]

tflist <- data.table.to.tflist(TF)
v <- unlist(tflist)
i <- names(v)
terms <- sort(unique(as.character(if (is.null(control$dictionary)) i
else control$dictionary)))
i <- match(i, terms)
j <- rep.int(seq_along(TF[, unique(doc_id)]), lengths(tflist))

docs <- as.character(TF[, unique(doc_id)])
ndoc <- length(docs)

m <- simple_triplet_matrix(i, j, as.numeric(v),
nrow = length(terms),
ncol = ndoc,
dimnames = list(Terms = terms, Docs = docs))

m <- filter_global_bounds(m, control$bounds$global)

.TermDocumentMatrix(m, control$weighting)
}

DocumentTermMatrix.TF <-
function(TF, control = list())
t(TermDocumentMatrix.TF(TF, control))

DocumentTermMatrix <-
function(x, control = list())
t(TermDocumentMatrix(x, control))
Expand Down
1 change: 1 addition & 0 deletions R/tm.R
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
.datatable.aware <- TRUE
102 changes: 102 additions & 0 deletions R/weight.R
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,108 @@ weightTfIdf <-
if (isDTM) t(m) else m
}, "term frequency - inverse document frequency", "tf-idf")

weightSMART2 <- WeightFunction(function(m, spec = "nnn", control = list()) {
stopifnot(inherits(m, c("DocumentTermMatrix", "TermDocumentMatrix")),
is.character(spec), nchar(spec) == 3L, is.list(control))

term_frequency <-
match.arg(substr(spec, 1L, 1L),
c("n", "l", "a", "b", "L"))
document_frequency <-
match.arg(substr(spec, 2L, 2L),
c("n", "t", "p"))
normalization <-
match.arg(substr(spec, 3L, 3L),
c("n", "c", "u", "b"))

isDTM <- inherits(m, "DocumentTermMatrix")
if (isDTM) m <- t(m)

if (normalization == "b") {
## Need to compute the character lengths of the documents
## before starting the weighting.
charlengths <-
tapply(nchar(Terms(m))[m$i] * m$v, m$j, sum)
}

## Term frequency
m$v <- switch(term_frequency,
## natural
n = m$v,
## logarithm
l = 1 + log2(m$v),
## augmented
a = {
s <- tapply(m$v, m$j, max)
0.5 + (0.5 * m$v) / s[as.character(m$j)]
},
## boolean
b = as.numeric(m$v > 0),
## log ave
L = {
s <- tapply(m$v, m$j, mean)
((1 + log2(m$v)) / (1 + log2(s[as.character(m$j)])))
})

## Document frequency
if(!is.null(control$docfreq))
rs <- control$docfreq + row_sums(m > 0)
else
rs <- row_sums(m > 0)
if(!is.null(control$ndoc))
ndoc <- control$ndoc + nDocs(m)
else
ndoc <- nDocs(m)

if (any(rs == 0))
warning("unreferenced term(s): ",
paste(Terms(m)[rs == 0], collapse = " "))
df <- switch(document_frequency,
## natural
n = 1,
## idf
t = log2(ndoc / rs),
## prob idf
p = max(0, log2((ndoc - rs) / rs)))
df[!is.finite(df)] <- 0

## Normalization
cs <- col_sums(m)
if (any(cs == 0))
warning("empty document(s): ",
paste(Docs(m)[cs == 0], collapse = " "))
norm <- switch(normalization,
## none
n = rep.int(1, ndoc),
## cosine
c = sqrt(col_sums(m ^ 2)),
## pivoted unique
u = {
if (is.null(pivot <- control$pivot))
stop("invalid control argument pivot")
if (is.null(slope <- control$slope))
stop("invalid control argument slope")
(slope * sqrt(col_sums(m ^ 2)) +
(1 - slope) * pivot)
},
## byte size
b = {
if (is.null(alpha <- control$alpha))
stop("invalid control argument alpha")
norm <- double(ndoc)
norm[match(names(charlengths),
seq_along(norm))] <-
charlengths ^ alpha
norm
})

m <- m * df
m$v <- m$v / norm[m$j]
attr(m, "weighting") <- c(paste("SMART", spec), "SMART")

m <- if (isDTM) t(m) else m
}, "SMART2", "SMART2")

weightSMART <-
WeightFunction(function(m, spec = "nnn", control = list()) {
stopifnot(inherits(m, c("DocumentTermMatrix", "TermDocumentMatrix")),
Expand Down
Binary file added src/RcppExports.o
Binary file not shown.
Binary file added src/copy.o
Binary file not shown.
Binary file added src/init.o
Binary file not shown.
Binary file added src/remove.o
Binary file not shown.
Binary file added src/scan.o
Binary file not shown.
Binary file added src/tdm.o
Binary file not shown.
Binary file added src/tm.so
Binary file not shown.
Binary file added src/tokenizer.o
Binary file not shown.