-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Open
Description
When using -image_size 2432
, -image_size 2560
, and -image_size 2816
, with -backend cudnn
, -optimizer adam
, and -style_scale 0.5
, the loss values seem to remain the same in every iteration. Lower image sizes don't seem to suffer from this issue.
I also used -gpu 0,1,2,3,4,5,6,7 -multigpu_strategy 2,3,4,6,8,11,12
, which is the most efficient set of parameters for multiple GPUs that I have come across thus far.
ubuntu@ip-Address:~/neural-style$ ./multires_1.sh
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:537] Reading dangerously large protocol message. If the message turns out to be larger than 1073741824 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:78] The total number of bytes read was 538683157
Successfully loaded models/VGG16_SOD_finetune.caffemodel
conv1_1: 64 3 3 3
conv1_2: 64 64 3 3
conv2_1: 128 64 3 3
conv2_2: 128 128 3 3
conv3_1: 256 128 3 3
conv3_2: 256 256 3 3
conv3_3: 256 256 3 3
conv4_1: 512 256 3 3
conv4_2: 512 512 3 3
conv4_3: 512 512 3 3
conv5_1: 512 512 3 3
conv5_2: 512 512 3 3
conv5_3: 512 512 3 3
fc6: 1 1 25088 4096
fc7: 1 1 4096 4096
fc8-SOD100: 1 1 4096 100
Setting up style layer 2 : relu1_1
Setting up style layer 7 : relu2_1
Setting up style layer 12 : relu3_1
Setting up style layer 19 : relu4_1
Setting up content layer 21 : relu4_2
Setting up style layer 26 : relu5_1
Capturing content targets
nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> output]
(1): nn.GPU(1) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(2): nn.GPU(2) @ nn.Sequential {
[input -> (1) -> output]
(1): nn.StyleLoss
}
(3): nn.GPU(3) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialConvolution(64 -> 64, 3x3, 1,1, 1,1)
}
(4): nn.GPU(4) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ReLU
(2): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(5): nn.GPU(5) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(64 -> 128, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(6): nn.GPU(6) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.StyleLoss
(2): cudnn.SpatialConvolution(128 -> 128, 3x3, 1,1, 1,1)
(3): cudnn.ReLU
}
(7): nn.GPU(7) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(8): nn.GPU(8) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> (19) -> (20) -> output]
(1): cudnn.SpatialConvolution(128 -> 256, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
(3): nn.StyleLoss
(4): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(5): cudnn.ReLU
(6): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(7): cudnn.ReLU
(8): cudnn.SpatialMaxPooling(2x2, 2,2)
(9): cudnn.SpatialConvolution(256 -> 512, 3x3, 1,1, 1,1)
(10): cudnn.ReLU
(11): nn.StyleLoss
(12): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(13): cudnn.ReLU
(14): nn.ContentLoss
(15): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(16): cudnn.ReLU
(17): cudnn.SpatialMaxPooling(2x2, 2,2)
(18): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(19): cudnn.ReLU
(20): nn.StyleLoss
}
}
Capturing style target 1
Capturing style target 2
Capturing style target 3
Capturing style target 4
Capturing style target 5
Capturing style target 6
Capturing style target 7
Capturing style target 8
Running optimization with ADAM
Iteration 50 / 200
Content 1 loss: 1994813.281250
Style 1 loss: 1589.992940
Style 2 loss: 2065276.977539
Style 3 loss: 2789657.592773
Style 4 loss: 215494.812012
Style 5 loss: 9914.423704
Total loss: 7076747.080219
Iteration 100 / 200
Content 1 loss: 1994813.281250
Style 1 loss: 1589.992940
Style 2 loss: 2065276.977539
Style 3 loss: 2789657.592773
Style 4 loss: 215494.812012
Style 5 loss: 9914.423704
Total loss: 7076747.080219
Iteration 150 / 200
Content 1 loss: 1994813.281250
Style 1 loss: 1589.992940
Style 2 loss: 2065276.977539
Style 3 loss: 2789657.592773
Style 4 loss: 215494.812012
Style 5 loss: 9914.423704
Total loss: 7076747.080219
Iteration 200 / 200
Content 1 loss: 1994813.281250
Style 1 loss: 1589.992940
Style 2 loss: 2065276.977539
Style 3 loss: 2789657.592773
Style 4 loss: 215494.812012
Style 5 loss: 9914.423704
Total loss: 7076747.080219
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:537] Reading dangerously large protocol message. If the message turns out to be larger than 1073741824 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:78] The total number of bytes read was 538683157
Successfully loaded models/VGG16_SOD_finetune.caffemodel
conv1_1: 64 3 3 3
conv1_2: 64 64 3 3
conv2_1: 128 64 3 3
conv2_2: 128 128 3 3
conv3_1: 256 128 3 3
conv3_2: 256 256 3 3
conv3_3: 256 256 3 3
conv4_1: 512 256 3 3
conv4_2: 512 512 3 3
conv4_3: 512 512 3 3
conv5_1: 512 512 3 3
conv5_2: 512 512 3 3
conv5_3: 512 512 3 3
fc6: 1 1 25088 4096
fc7: 1 1 4096 4096
fc8-SOD100: 1 1 4096 100
Setting up style layer 2 : relu1_1
Setting up style layer 7 : relu2_1
Setting up style layer 12 : relu3_1
Setting up style layer 19 : relu4_1
Setting up content layer 21 : relu4_2
Setting up style layer 26 : relu5_1
Capturing content targets
nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> output]
(1): nn.GPU(1) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(2): nn.GPU(2) @ nn.Sequential {
[input -> (1) -> output]
(1): nn.StyleLoss
}
(3): nn.GPU(3) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialConvolution(64 -> 64, 3x3, 1,1, 1,1)
}
(4): nn.GPU(4) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ReLU
(2): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(5): nn.GPU(5) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(64 -> 128, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(6): nn.GPU(6) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.StyleLoss
(2): cudnn.SpatialConvolution(128 -> 128, 3x3, 1,1, 1,1)
(3): cudnn.ReLU
}
(7): nn.GPU(7) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(8): nn.GPU(8) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> (19) -> (20) -> output]
(1): cudnn.SpatialConvolution(128 -> 256, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
(3): nn.StyleLoss
(4): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(5): cudnn.ReLU
(6): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(7): cudnn.ReLU
(8): cudnn.SpatialMaxPooling(2x2, 2,2)
(9): cudnn.SpatialConvolution(256 -> 512, 3x3, 1,1, 1,1)
(10): cudnn.ReLU
(11): nn.StyleLoss
(12): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(13): cudnn.ReLU
(14): nn.ContentLoss
(15): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(16): cudnn.ReLU
(17): cudnn.SpatialMaxPooling(2x2, 2,2)
(18): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(19): cudnn.ReLU
(20): nn.StyleLoss
}
}
Capturing style target 1
Capturing style target 2
Capturing style target 3
Capturing style target 4
Capturing style target 5
Capturing style target 6
Capturing style target 7
Capturing style target 8
Running optimization with ADAM
Iteration 50 / 200
Content 1 loss: 1840350.585938
Style 1 loss: 2566.359043
Style 2 loss: 3547471.069336
Style 3 loss: 5368391.235352
Style 4 loss: 355980.445862
Style 5 loss: 13842.927933
Total loss: 11128602.623463
Iteration 100 / 200
Content 1 loss: 1840350.585938
Style 1 loss: 2566.359043
Style 2 loss: 3547471.069336
Style 3 loss: 5368391.235352
Style 4 loss: 355980.445862
Style 5 loss: 13842.927933
Total loss: 11128602.623463
Iteration 150 / 200
Content 1 loss: 1840350.585938
Style 1 loss: 2566.359043
Style 2 loss: 3547471.069336
Style 3 loss: 5368391.235352
Style 4 loss: 355980.445862
Style 5 loss: 13842.927933
Total loss: 11128602.623463
Iteration 200 / 200
Content 1 loss: 1840350.585938
Style 1 loss: 2566.359043
Style 2 loss: 3547471.069336
Style 3 loss: 5368391.235352
Style 4 loss: 355980.445862
Style 5 loss: 13842.927933
Total loss: 11128602.623463
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:537] Reading dangerously large protocol message. If the message turns out to be larger than 1073741824 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:78] The total number of bytes read was 538683157
Successfully loaded models/VGG16_SOD_finetune.caffemodel
conv1_1: 64 3 3 3
conv1_2: 64 64 3 3
conv2_1: 128 64 3 3
conv2_2: 128 128 3 3
conv3_1: 256 128 3 3
conv3_2: 256 256 3 3
conv3_3: 256 256 3 3
conv4_1: 512 256 3 3
conv4_2: 512 512 3 3
conv4_3: 512 512 3 3
conv5_1: 512 512 3 3
conv5_2: 512 512 3 3
conv5_3: 512 512 3 3
fc6: 1 1 25088 4096
fc7: 1 1 4096 4096
fc8-SOD100: 1 1 4096 100
Setting up style layer 2 : relu1_1
Setting up style layer 7 : relu2_1
Setting up style layer 12 : relu3_1
Setting up style layer 19 : relu4_1
Setting up content layer 21 : relu4_2
Setting up style layer 26 : relu5_1
Capturing content targets
nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> output]
(1): nn.GPU(1) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(2): nn.GPU(2) @ nn.Sequential {
[input -> (1) -> output]
(1): nn.StyleLoss
}
(3): nn.GPU(3) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialConvolution(64 -> 64, 3x3, 1,1, 1,1)
}
(4): nn.GPU(4) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ReLU
(2): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(5): nn.GPU(5) @ nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(64 -> 128, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
}
(6): nn.GPU(6) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.StyleLoss
(2): cudnn.SpatialConvolution(128 -> 128, 3x3, 1,1, 1,1)
(3): cudnn.ReLU
}
(7): nn.GPU(7) @ nn.Sequential {
[input -> (1) -> output]
(1): cudnn.SpatialMaxPooling(2x2, 2,2)
}
(8): nn.GPU(8) @ nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> (19) -> (20) -> output]
(1): cudnn.SpatialConvolution(128 -> 256, 3x3, 1,1, 1,1)
(2): cudnn.ReLU
(3): nn.StyleLoss
(4): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(5): cudnn.ReLU
(6): cudnn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(7): cudnn.ReLU
(8): cudnn.SpatialMaxPooling(2x2, 2,2)
(9): cudnn.SpatialConvolution(256 -> 512, 3x3, 1,1, 1,1)
(10): cudnn.ReLU
(11): nn.StyleLoss
(12): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(13): cudnn.ReLU
(14): nn.ContentLoss
(15): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(16): cudnn.ReLU
(17): cudnn.SpatialMaxPooling(2x2, 2,2)
(18): cudnn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(19): cudnn.ReLU
(20): nn.StyleLoss
}
}
Capturing style target 1
Capturing style target 2
Capturing style target 3
Capturing style target 4
Capturing style target 5
Capturing style target 6
Capturing style target 7
Capturing style target 8
Running optimization with ADAM
Iteration 50 / 200
Content 1 loss: 1613944.433594
Style 1 loss: 3785.628319
Style 2 loss: 5391063.720703
Style 3 loss: 8514136.230469
Style 4 loss: 540189.697266
Style 5 loss: 18604.844570
Total loss: 16081724.554920
Iteration 100 / 200
Content 1 loss: 1613944.433594
Style 1 loss: 3785.628319
Style 2 loss: 5391063.720703
Style 3 loss: 8514136.230469
Style 4 loss: 540189.697266
Style 5 loss: 18604.844570
Total loss: 16081724.554920
Iteration 150 / 200
Content 1 loss: 1613944.433594
Style 1 loss: 3785.628319
Style 2 loss: 5391063.720703
Style 3 loss: 8514136.230469
Style 4 loss: 540189.697266
Style 5 loss: 18604.844570
Total loss: 16081724.554920
Iteration 200 / 200
Content 1 loss: 1613944.433594
Style 1 loss: 3785.628319
Style 2 loss: 5391063.720703
Style 3 loss: 8514136.230469
Style 4 loss: 540189.697266
Style 5 loss: 18604.844570
Total loss: 16081724.554920
What is happening here, and is it possible to fix this?
Here's the nvidia-smi
output:
ubuntu@ip-Address:~$ nvidia-smi
Fri Oct 20 01:58:01 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48 Driver Version: 367.48 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 0000:00:17.0 Off | 0 |
| N/A 62C P0 63W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 Off | 0000:00:18.0 Off | 0 |
| N/A 47C P0 71W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla K80 Off | 0000:00:19.0 Off | 0 |
| N/A 67C P0 61W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla K80 Off | 0000:00:1A.0 Off | 0 |
| N/A 52C P0 72W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 Tesla K80 Off | 0000:00:1B.0 Off | 0 |
| N/A 65C P0 66W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 Tesla K80 Off | 0000:00:1C.0 Off | 0 |
| N/A 48C P0 71W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 6 Tesla K80 Off | 0000:00:1D.0 Off | 0 |
| N/A 65C P0 66W / 149W | 0MiB / 11439MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 7 Tesla K80 Off | 0000:00:1E.0 Off | 0 |
| N/A 48C P0 74W / 149W | 0MiB / 11439MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
ubuntu@ip-Address:~$
Edit:
This also happened with a second content/style image combo at the same image size values.
jshaw
Metadata
Metadata
Assignees
Labels
No labels