-
Notifications
You must be signed in to change notification settings - Fork 13.4k
[mlir][tosa] Canonicalise slice over overlapped or inside a pad. #138270
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
GeorgeARM
wants to merge
1
commit into
llvm:main
Choose a base branch
from
GeorgeARM:can-slice
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+159
−2
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Update the paddings and/or the slice parameters when a `tosa.slice` after a `tosa.pad` is accessing only an overlapping or not region of the padded tensor. Signed-off-by: Georgios Pinitas <[email protected]>
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-tosa Author: Georgios Pinitas (GeorgeARM) ChangesUpdate the paddings and/or the slice parameters when a Full diff: https://github.com/llvm/llvm-project/pull/138270.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 47368532df169..5347fb1c16698 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -731,6 +731,127 @@ struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
}
};
+struct PadSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
+ using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
+ PatternRewriter &rewriter) const override {
+ Value sliceInput = sliceOp.getInput1();
+
+ // Check if producer is a PadOp
+ auto padOp = sliceInput.getDefiningOp<tosa::PadOp>();
+ if (!padOp)
+ return rewriter.notifyMatchFailure(sliceOp,
+ "slice input must be a pad operation");
+
+ // Check PadOp has a single consumer
+ if (!padOp->hasOneUse())
+ return rewriter.notifyMatchFailure(sliceOp,
+ "pad shall have a single consumer");
+
+ // Check input is statically ranked
+ auto inputTy = dyn_cast<RankedTensorType>(padOp.getInput1().getType());
+ auto padTy = dyn_cast<RankedTensorType>(padOp.getType());
+ if (!inputTy || !padTy)
+ return rewriter.notifyMatchFailure(
+ sliceOp, "slice input must be a static ranked tensor");
+
+ // Validate and extract tosa::PadOp padding
+ DenseIntElementsAttr paddingElems;
+ if (!matchPattern(padOp.getPadding(), m_Constant(&paddingElems))) {
+ return rewriter.notifyMatchFailure(
+ sliceOp,
+ "The `padding` input specified on the tosa::PadOp must be constant.");
+ }
+ llvm::SmallVector<int64_t> padPaddings =
+ llvm::to_vector(paddingElems.getValues<int64_t>());
+
+ // Extract slice parameters
+ DenseElementsAttr startElems;
+ if (!matchPattern(sliceOp.getStart(), m_Constant(&startElems)))
+ return rewriter.notifyMatchFailure(
+ sliceOp, "start of slice must be a static ranked shape");
+ llvm::SmallVector<int64_t> sliceStarts =
+ llvm::to_vector(startElems.getValues<int64_t>());
+
+ DenseElementsAttr sizeElems;
+ if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems)))
+ return rewriter.notifyMatchFailure(
+ sliceOp, "size of slice must be a static ranked shape");
+ llvm::SmallVector<int64_t> sliceSizes =
+ llvm::to_vector(sizeElems.getValues<int64_t>());
+
+ // Update the paddings
+ int64_t rank = inputTy.getRank();
+ llvm::SmallVector<int64_t> newSliceStarts(rank, 0);
+ llvm::SmallVector<int64_t> newPadPaddings(2 * rank, 0);
+ llvm::SmallVector<int64_t> newPadShape(rank, 0);
+ bool updated = false;
+ for (int64_t i = 0; i < rank; ++i) {
+ const int64_t padLo = padPaddings[i * 2];
+ const int64_t padHi = padPaddings[i * 2 + 1];
+ const int64_t sliceStart = sliceStarts[i];
+ const int64_t sliceSize = sliceSizes[i];
+ const int64_t sliceEnd = sliceStart + sliceSize;
+
+ const int64_t dimSize = inputTy.getShape()[i];
+ const int64_t dimStart = padLo;
+ const int64_t dimEnd = padLo + dimSize;
+ const int64_t dimTotal = padLo + dimSize + padHi;
+
+ // Check slice within bounds
+ if (sliceStart < 0 || sliceEnd > dimTotal)
+ return rewriter.notifyMatchFailure(sliceOp, "slice out-of-bounds");
+
+ const int64_t newPadLo = std::max<int64_t>(padLo - sliceStart, 0);
+ const int64_t newPadHi =
+ std::max<int64_t>(sliceEnd - (padLo + dimSize), 0);
+ const int64_t newSliceStart = std::max<int64_t>(sliceStart - padLo, 0);
+
+ // Compute update slice/pad parameters
+ if (sliceStart < dimStart || sliceEnd > dimEnd) {
+ // Handle slice when not within the original input entirely
+ updated |= (newPadLo != padLo) || (newPadHi != padHi) ||
+ (newSliceStart != sliceStart);
+ newPadPaddings[i * 2] = newPadLo;
+ newPadPaddings[i * 2 + 1] = newPadHi;
+ newSliceStarts[i] = newSliceStart;
+ } else {
+ // Slice is within the original input
+ updated |= newSliceStart != sliceStart;
+ newSliceStarts[i] = newSliceStart;
+ }
+
+ // Calculate new pad output shape
+ newPadShape[i] =
+ newPadPaddings[i * 2] + dimSize + newPadPaddings[i * 2 + 1];
+ }
+
+ // Check that we actually need to proceed with the rewrite
+ if (!updated)
+ return rewriter.notifyMatchFailure(
+ sliceOp, "terminate condition; nothing to rewrite");
+
+ // Create a PadOp with updated padding
+ auto newPaddingsOp =
+ getTosaConstShape(rewriter, sliceOp.getLoc(), newPadPaddings);
+ auto newPadTy =
+ RankedTensorType::get(newPadShape, inputTy.getElementType());
+ auto newPadOp = rewriter.create<tosa::PadOp>(
+ padOp.getLoc(), newPadTy, padOp.getInput1(), newPaddingsOp,
+ padOp.getPadConst());
+
+ // Update SliceOp and point to new PadOp
+ auto newStartOp =
+ getTosaConstShape(rewriter, sliceOp.getLoc(), newSliceStarts);
+ rewriter.replaceOpWithNewOp<tosa::SliceOp>(sliceOp, sliceOp.getType(),
+ newPadOp.getResult(), newStartOp,
+ sliceOp.getSize());
+
+ return success();
+ }
+};
+
// Update size operand of tosa.slice if size has dynamic dims but corresponding
// output dim is static
struct SliceDynamicSizeCanonicalization
@@ -779,8 +900,8 @@ struct SliceDynamicSizeCanonicalization
void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
- results.add<ConcatSliceOptimization, SliceDynamicSizeCanonicalization>(
- context);
+ results.add<ConcatSliceOptimization, PadSliceOptimization,
+ SliceDynamicSizeCanonicalization>(context);
}
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/Tosa/canonicalize.mlir b/mlir/test/Dialect/Tosa/canonicalize.mlir
index 59fd490330691..6e99f57341982 100644
--- a/mlir/test/Dialect/Tosa/canonicalize.mlir
+++ b/mlir/test/Dialect/Tosa/canonicalize.mlir
@@ -985,6 +985,42 @@ func.func @canonicalize_concat_slice_on_non_concat_axis(%arg0 : tensor<1x12x12xf
// -----
+// CHECK-LABEL: @canonicalize_pad_slice_overlap
+// CHECK-DAG: %[[PAD_CONST:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
+// CHECK-DAG: %[[ZERO:.*]] = tosa.const_shape {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
+// CHECK-DAG: %[[PADDING:.*]] = tosa.const_shape {values = dense<[0, 0, 0, 0, 1, 1, 0, 0]> : tensor<8xindex>}
+// CHECK-DAG: %[[SLICE_SIZE:.*]] = tosa.const_shape {values = dense<[1, 14, 18, 3]> : tensor<4xindex>}
+// CHECK: %[[PADDED:.*]] = tosa.pad %arg0, %[[PADDING]], %[[PAD_CONST]]
+// CHECK: %[[SLICED:.*]] = tosa.slice %[[PADDED]], %[[ZERO]], %[[SLICE_SIZE]]
+func.func @canonicalize_pad_slice_overlap(%arg0: tensor<1x16x16x3xf32>) -> tensor<1x14x18x3xf32> {
+ %pad_const = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %padding = tosa.const_shape {values = dense<[0, 0, 0, 0, 2, 2, 0, 0]> : tensor<8xindex>} : () -> !tosa.shape<8>
+ %padded = tosa.pad %arg0, %padding, %pad_const : (tensor<1x16x16x3xf32>, !tosa.shape<8>, tensor<1xf32>) -> tensor<1x16x20x3xf32>
+ %start = tosa.const_shape {values = dense<[0, 0, 1, 0]> : tensor<4xindex>} : () -> !tosa.shape<4>
+ %size = tosa.const_shape {values = dense<[1, 14, 18, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
+ %sliced = tosa.slice %padded, %start, %size : (tensor<1x16x20x3xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<1x14x18x3xf32>
+ return %sliced : tensor<1x14x18x3xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @canonicalize_pad_slice_inside
+// CHECK-DAG: %[[SLICE_START:.*]] = tosa.const_shape {values = dense<[0, 1, 2, 0]> : tensor<4xindex>}
+// CHECK-DAG: %[[SLICE_SIZE:.*]] = tosa.const_shape {values = dense<[1, 14, 10, 3]> : tensor<4xindex>}
+// CHECK-NOT: tosa.pad
+// CHECK: %[[SLICED:.*]] = tosa.slice %arg0, %[[SLICE_START]], %[[SLICE_SIZE]]
+func.func @canonicalize_pad_slice_inside(%arg0: tensor<1x16x16x3xf32>) -> tensor<1x14x14x3xf32> {
+ %pad_const = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %padding = tosa.const_shape {values = dense<[0, 0, 0, 0, 2, 2, 0, 0]> : tensor<8xindex>} : () -> !tosa.shape<8>
+ %padded = tosa.pad %arg0, %padding, %pad_const : (tensor<1x16x16x3xf32>, !tosa.shape<8>, tensor<1xf32>) -> tensor<1x16x20x3xf32>
+ %start = tosa.const_shape {values = dense<[0, 1, 4, 0]> : tensor<4xindex>} : () -> !tosa.shape<4>
+ %size = tosa.const_shape {values = dense<[1, 14, 10, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
+ %sliced = tosa.slice %padded, %start, %size : (tensor<1x16x20x3xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<1x14x14x3xf32>
+ return %sliced : tensor<1x14x14x3xf32>
+}
+
+// -----
+
// CHECK-LABEL: @fold_log_exp
func.func @fold_log_exp(%arg0: tensor<?x1xf32>) -> tensor<?x1xf32> {
// CHECK: return %arg{{.*}} : tensor<?x1xf32>
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Update the paddings and/or the slice parameters when a
tosa.slice
after atosa.pad
is accessing only an overlapping or not region of the padded tensor.