-
Notifications
You must be signed in to change notification settings - Fork 262
MRG: add resampling and smoothing functions #255
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
0ed7ce0
b642cf8
6bafbc6
650758a
a9e1900
b947a1c
412fe6d
054e20c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## | ||
# | ||
# See COPYING file distributed along with the NiBabel package for the | ||
# copyright and license terms. | ||
# | ||
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## | ||
""" Image processing functions for: | ||
* smoothing | ||
* resampling | ||
* converting sd to and from FWHM | ||
Smoothing and resampling routines need scipy | ||
""" | ||
from __future__ import print_function, division, absolute_import | ||
|
||
import numpy as np | ||
import numpy.linalg as npl | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If you're going to be using There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, true in general I agree, but here I'm just using it for a simple 4x4 matrix inversion, and it would be a bit inconvenient to add the conditional stuff about scipy being present to avoid import errors when it isn't installed. |
||
|
||
from .optpkg import optional_package | ||
spnd, _, _ = optional_package('scipy.ndimage') | ||
|
||
from .affines import AffineError, to_matvec, from_matvec, append_diag | ||
from .spaces import vox2out_vox | ||
from .nifti1 import Nifti1Image | ||
|
||
SIGMA2FWHM = np.sqrt(8 * np.log(2)) | ||
|
||
|
||
def fwhm2sigma(fwhm): | ||
""" Convert a FWHM value to sigma in a Gaussian kernel. | ||
Parameters | ||
---------- | ||
fwhm : array-like | ||
FWHM value or values | ||
Returns | ||
------- | ||
sigma : array or float | ||
sigma values corresponding to `fwhm` values | ||
Examples | ||
-------- | ||
>>> sigma = fwhm2sigma(6) | ||
>>> sigmae = fwhm2sigma([6, 7, 8]) | ||
>>> sigma == sigmae[0] | ||
True | ||
""" | ||
return np.asarray(fwhm) / SIGMA2FWHM | ||
|
||
|
||
def sigma2fwhm(sigma): | ||
""" Convert a sigma in a Gaussian kernel to a FWHM value | ||
Parameters | ||
---------- | ||
sigma : array-like | ||
sigma value or values | ||
Returns | ||
------- | ||
fwhm : array or float | ||
fwhm values corresponding to `sigma` values | ||
Examples | ||
-------- | ||
>>> fwhm = sigma2fwhm(3) | ||
>>> fwhms = sigma2fwhm([3, 4, 5]) | ||
>>> fwhm == fwhms[0] | ||
True | ||
""" | ||
return np.asarray(sigma) * SIGMA2FWHM | ||
|
||
|
||
def adapt_affine(affine, n_dim): | ||
""" Adapt input / output dimensions of spatial `affine` for `n_dims` | ||
Adapts a spatial (4, 4) affine that is being applied to an image with fewer | ||
than 3 spatial dimensions, or more than 3 dimensions. If there are more | ||
than three dimensions, assume an identity transformation for these | ||
dimensions. | ||
Parameters | ||
---------- | ||
affine : array-like | ||
affine transform. Usually shape (4, 4). For what follows ``N, M = | ||
affine.shape`` | ||
n_dims : int | ||
Number of dimensions of underlying array, and therefore number of input | ||
dimensions for affine. | ||
Returns | ||
------- | ||
adapted : shape (M, n_dims+1) array | ||
Affine array adapted to number of input dimensions. Columns of the | ||
affine corresponding to missing input dimensions have been dropped, | ||
columns corresponding to extra input dimensions have an extra identity | ||
column added | ||
""" | ||
affine = np.asarray(affine) | ||
rzs, trans = to_matvec(affine) | ||
# For missing input dimensions, drop columns in rzs | ||
rzs = rzs[:, :n_dim] | ||
adapted = from_matvec(rzs, trans) | ||
n_extra_columns = n_dim - adapted.shape[1] + 1 | ||
if n_extra_columns > 0: | ||
adapted = append_diag(adapted, np.ones((n_extra_columns,))) | ||
return adapted | ||
|
||
|
||
def resample_from_to(from_img, | ||
to_vox_map, | ||
order=3, | ||
mode='constant', | ||
cval=0., | ||
out_class=Nifti1Image): | ||
""" Resample image `from_img` to mapped voxel space `to_vox_map` | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe mention in another line here that resampling using nth-order spline interpolation... that way it doesn't have to be inferred from the arguments |
||
Resample using N-d spline interpolation. | ||
Parameters | ||
---------- | ||
from_img : object | ||
Object having attributes ``dataobj``, ``affine``, ``header``. If | ||
`out_class` is not None, ``img.__class__`` should be able to construct | ||
an image from data, affine and header. | ||
to_vox_map : image object or length 2 sequence | ||
If object, has attributes ``shape`` giving input voxel shape, and | ||
``affine`` giving mapping of input voxels to output space. If length 2 | ||
sequence, elements are (shape, affine) with same meaning as above. The | ||
affine is a (4, 4) array-like. | ||
order : int, optional | ||
The order of the spline interpolation, default is 3. The order has to | ||
be in the range 0-5 (see ``scipy.ndimage.affine_transform``) | ||
mode : str, optional | ||
Points outside the boundaries of the input are filled according | ||
to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). | ||
Default is 'constant' (see ``scipy.ndimage.affine_transform``) | ||
cval : scalar, optional | ||
Value used for points outside the boundaries of the input if | ||
``mode='constant'``. Default is 0.0 (see | ||
``scipy.ndimage.affine_transform``) | ||
out_class : None or SpatialImage class, optional | ||
Class of output image. If None, use ``from_img.__class__``. | ||
Returns | ||
------- | ||
out_img : object | ||
Image of instance specified by `out_class`, containing data output from | ||
resampling `from_img` into axes aligned to the output space of | ||
``from_img.affine`` | ||
""" | ||
try: | ||
to_shape, to_affine = to_vox_map.shape, to_vox_map.affine | ||
except AttributeError: | ||
to_shape, to_affine = to_vox_map | ||
a_to_affine = adapt_affine(to_affine, len(to_shape)) | ||
if out_class is None: | ||
out_class = from_img.__class__ | ||
from_n_dim = len(from_img.shape) | ||
if from_n_dim < 3: | ||
raise AffineError('from_img must be at least 3D') | ||
a_from_affine = adapt_affine(from_img.affine, from_n_dim) | ||
to_vox2from_vox = npl.inv(a_from_affine).dot(a_to_affine) | ||
rzs, trans = to_matvec(to_vox2from_vox) | ||
data = spnd.affine_transform(from_img.dataobj, | ||
rzs, | ||
trans, | ||
to_shape, | ||
order=order, | ||
mode=mode, | ||
cval=cval) | ||
return out_class(data, to_affine, from_img.header) | ||
|
||
|
||
def resample_to_output(in_img, | ||
voxel_sizes=None, | ||
order=3, | ||
mode='constant', | ||
cval=0., | ||
out_class=Nifti1Image): | ||
""" Resample image `in_img` to output voxel axes (world space) | ||
Parameters | ||
---------- | ||
in_img : object | ||
Object having attributes ``dataobj``, ``affine``, ``header``. If | ||
`out_class` is not None, ``img.__class__`` should be able to construct | ||
an image from data, affine and header. | ||
voxel_sizes : None or sequence | ||
Gives the diagonal entries of ``out_img.affine` (except the trailing 1 | ||
for the homogenous coordinates) (``out_img.affine == | ||
np.diag(voxel_sizes + [1])``). If None, return identity | ||
`out_img.affine`. If scalar, interpret as vector ``[voxel_sizes] * | ||
len(in_img.shape)``. | ||
order : int, optional | ||
The order of the spline interpolation, default is 3. The order has to | ||
be in the range 0-5 (see ``scipy.ndimage.affine_transform``). | ||
mode : str, optional | ||
Points outside the boundaries of the input are filled according to the | ||
given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is | ||
'constant' (see ``scipy.ndimage.affine_transform``). | ||
cval : scalar, optional | ||
Value used for points outside the boundaries of the input if | ||
``mode='constant'``. Default is 0.0 (see | ||
``scipy.ndimage.affine_transform``). | ||
out_class : None or SpatialImage class, optional | ||
Class of output image. If None, use ``in_img.__class__``. | ||
Returns | ||
------- | ||
out_img : object | ||
Image of instance specified by `out_class`, containing data output from | ||
resampling `in_img` into axes aligned to the output space of | ||
``in_img.affine`` | ||
""" | ||
if out_class is None: | ||
out_class = in_img.__class__ | ||
in_shape = in_img.shape | ||
n_dim = len(in_shape) | ||
if voxel_sizes is not None: | ||
voxel_sizes = np.asarray(voxel_sizes) | ||
if voxel_sizes.ndim == 0: # Scalar | ||
voxel_sizes = np.repeat(voxel_sizes, n_dim) | ||
# Allow 2D images by promoting to 3D. We might want to see what a slice | ||
# looks like when resampled into world coordinates | ||
if n_dim < 3: # Expand image to 3D, make voxel sizes match | ||
new_shape = in_shape + (1,) * (3 - n_dim) | ||
data = in_img.get_data().reshape(new_shape) # 2D data should be small | ||
in_img = out_class(data, in_img.affine, in_img.header) | ||
if voxel_sizes is not None and len(voxel_sizes) == n_dim: | ||
# Need to pad out voxel sizes to match new image dimensions | ||
voxel_sizes = tuple(voxel_sizes) + (1,) * (3 - n_dim) | ||
out_vox_map = vox2out_vox((in_img.shape, in_img.affine), voxel_sizes) | ||
return resample_from_to(in_img, out_vox_map, order, mode, cval, out_class) | ||
|
||
|
||
def smooth_image(img, | ||
fwhm, | ||
mode='nearest', | ||
cval=0., | ||
out_class=Nifti1Image): | ||
""" Smooth image `img` along voxel axes by FWHM `fwhm` millimeters | ||
Parameters | ||
---------- | ||
img : object | ||
Object having attributes ``dataobj``, ``affine``, ``header``. If | ||
`out_class` is not None, ``img.__class__`` should be able to construct | ||
an image from data, affine and header. | ||
fwhm : scalar or length 3 sequence | ||
FWHM *in mm* over which to smooth. The smoothing applies to the voxel | ||
axes, not to the output axes, but is in millimeters. The function | ||
adjusts the FWHM to voxels using the voxel sizes calculated from the | ||
affine. A scalar implies the same smoothing across the spatial | ||
dimensions of the image, but 0 smoothing over any further dimensions | ||
such as time. A vector should be the same length as the number of | ||
image dimensions. | ||
mode : str, optional | ||
Points outside the boundaries of the input are filled according | ||
to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). | ||
Default is 'nearest'. This is different from the default for | ||
``scipy.ndimage.affine_transform``, which is 'constant'. 'nearest' | ||
might be a better choice when smoothing to the edge of an image where | ||
there is still strong brain signal, otherwise this signal will get | ||
blurred towards zero. | ||
cval : scalar, optional | ||
Value used for points outside the boundaries of the input if | ||
``mode='constant'``. Default is 0.0 (see | ||
``scipy.ndimage.affine_transform``). | ||
out_class : None or SpatialImage class, optional | ||
Class of output image. If None, use ``img.__class__``. | ||
Returns | ||
------- | ||
smoothed_img : object | ||
Image of instance specified by `out_class`, containing data output from | ||
smoothing `img` data by given FWHM kernel. | ||
""" | ||
if out_class is None: | ||
out_class = img.__class__ | ||
n_dim = len(img.shape) | ||
# TODO: make sure time axis is last | ||
# Pad out fwhm from scalar, adding 0 for fourth etc (time etc) dimensions | ||
fwhm = np.asarray(fwhm) | ||
if fwhm.size == 1: | ||
fwhm_scalar = fwhm | ||
fwhm = np.zeros((n_dim,)) | ||
fwhm[:3] = fwhm_scalar | ||
# Voxel sizes | ||
RZS = img.affine[:-1, :n_dim] | ||
vox = np.sqrt(np.sum(RZS ** 2, 0)) | ||
# Smoothing in terms of voxels | ||
vox_fwhm = fwhm / vox | ||
vox_sd = fwhm2sigma(vox_fwhm) | ||
# Do the smoothing | ||
sm_data = spnd.gaussian_filter(img.dataobj, | ||
vox_sd, | ||
mode=mode, | ||
cval=cval) | ||
return out_class(sm_data, img.affine, img.header) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
anat_moved.nii | ||
resampled_functional.nii |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
""" Make anatomical image with altered affine | ||
* Add some rotations and translations to affine; | ||
* Save as ``.nii`` file so SPM can read it. | ||
See ``resample_using_spm.m`` for processing of this generated image by SPM. | ||
""" | ||
|
||
import numpy as np | ||
|
||
import nibabel as nib | ||
from nibabel.eulerangles import euler2mat | ||
from nibabel.affines import from_matvec | ||
|
||
img = nib.load('anatomical.nii') | ||
some_rotations = euler2mat(0.1, 0.2, 0.3) | ||
extra_affine = from_matvec(some_rotations, [3, 4, 5]) | ||
moved_anat = nib.Nifti1Image(img.dataobj, | ||
extra_affine.dot(img.affine), | ||
img.header) | ||
moved_anat.set_data_dtype(np.float32) | ||
nib.save(moved_anat, 'anat_moved.nii') |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
% Script uses SPM to resample moved anatomical image. | ||
% | ||
% Run `python make_moved_anat.py` to generate file to work on. | ||
% | ||
% Run from the directory containing this file. | ||
% Works with Octave or MATLAB. | ||
% Needs SPM (5, 8 or 12) on the MATLAB path. | ||
P = {'functional.nii', 'anat_moved.nii'}; | ||
% Resample without masking | ||
flags = struct('mask', false, 'mean', false, ... | ||
'interp', 1, 'which', 1, ... | ||
'prefix', 'resampled_'); | ||
spm_reslice(P, flags); | ||
% Reorient to canonical orientation at 4mm resolution, polynomial interpolation | ||
to_canonical({'anat_moved.nii'}, 4, 'reoriented_', 1); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
function to_canonical(imgs, vox_sizes, prefix, hold) | ||
% Resample images to canonical (transverse) orientation with given voxel sizes | ||
% | ||
% Inspired by ``reorient.m`` by John Ashburner: | ||
% http://blogs.warwick.ac.uk/files/nichols/reorient.m | ||
% | ||
% Parameters | ||
% ---------- | ||
% imgs : char or cell array or struct array | ||
% Images to resample to canonical orientation. | ||
% vox_sizes : vector (3, 1), optional | ||
% Voxel sizes for output image. | ||
% prefix : char, optional | ||
% Prefix for output resampled images, default = 'r' | ||
% hold : float, optional | ||
% Hold (resampling method) value, default = 3. | ||
|
||
if ~isstruct(imgs) | ||
imgs = spm_vol(imgs); | ||
end | ||
if nargin < 2 | ||
vox_sizes = [1 1 1]; | ||
elseif numel(vox_sizes) == 1 | ||
vox_sizes = [vox_sizes vox_sizes vox_sizes]; | ||
end | ||
vox_sizes = vox_sizes(:); | ||
if nargin < 3 | ||
prefix = 'r'; | ||
end | ||
if nargin < 4 | ||
hold = 3; | ||
end | ||
|
||
for vol_no = 1:numel(imgs) | ||
vol = imgs{vol_no}(1); | ||
% From: | ||
% http://stackoverflow.com/questions/4165859/generate-all-possible-combinations-of-the-elements-of-some-vectors-cartesian-pr | ||
sets = {[1, vol.dim(1)], [1, vol.dim(2)], [1, vol.dim(3)]}; | ||
[x y z] = ndgrid(sets{:}); | ||
corners = [x(:) y(:) z(:)]; | ||
corner_coords = [corners ones(length(corners), 1)]'; | ||
corner_mm = vol.mat * corner_coords; | ||
min_xyz = min(corner_mm(1:3, :), [], 2); | ||
max_xyz = max(corner_mm(1:3, :), [], 2); | ||
% Make output volume | ||
out_vol = vol; | ||
out_vol.private = []; | ||
out_vol.mat = diag([vox_sizes' 1]); | ||
out_vol.mat(1:3, 4) = min_xyz - vox_sizes; | ||
out_vol.dim(1:3) = ceil((max_xyz - min_xyz) ./ vox_sizes) + 1; | ||
[dpath, froot, ext] = fileparts(vol.fname); | ||
out_vol.fname = fullfile(dpath, [prefix froot ext]); | ||
out_vol = spm_create_vol(out_vol); | ||
% Resample original volume at output volume grid | ||
plane_size = out_vol.dim(1:2); | ||
for slice_no = 1:out_vol.dim(3) | ||
resamp_affine = inv(spm_matrix([0 0 -slice_no]) * inv(out_vol.mat) * vol.mat); | ||
slice_vals = spm_slice_vol(vol, resamp_affine, plane_size, hold); | ||
out_vol = spm_write_plane(out_vol, slice_vals, slice_no); | ||
end | ||
end |
Large diffs are not rendered by default.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should any docs be updated to mention this? Not sure what
nibabel
doc building / standards are like.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would like to leave this out of the docs for now, to avoid people hitting the problem with unspecified axes.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You mean leave the resampling functions out entirely, until support is more complete? Fine by me.