Skip to content

obinexus/riftarch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 

Repository files navigation

RIFTARCH - RIFT Architecture Framework

Flexible Schema Architecture for Dimensional Coherence

Overview

RIFTARCH provides a flexible schema architecture that ensures dimensional coherence through isomorphic substrate mapping. By integrating NLM-Atlas for 3D information modeling and SemVerX for version management, RIFTARCH creates seamless bidirectional bridges with zero polyglot overhead.

Core Principles

Dimensional Coherence

  • 3D Information Modeling: Transform flat data structures into holographic representations
  • Isomorphic Mapping: Ensure all substrates maintain structural equivalence
  • Minimal Bloat: Compiled low-level tools with no runtime overhead

Canonical Isomorphism

canonical_bridge:
  nlm_atlas → riftarch → riftsdx
  ↑                               ↓
  ← ← ← bidirectional_flow ← ← ← 

Architecture Components

1. Flexible Schema Layer (SemVerX)

[schema]
type = "flexible"
version_pattern = "major.minor.patch.state.dimension"
isomorphic_validation = true
bloat_prevention = "compile_time"

2. NLM-Atlas Integration

interface RIFTARCHSchema {
  // 3D holographic data model
  dimensions: {
    x: "service_capabilities",
    y: "version_states", 
    z: "cost_functions"
  },
  
  // Isomorphic substrate mapping
  substrate_map: {
    source: NLMAtlasEntry,
    target: RIFTComponent,
    transform: IsomorphicFunction
  }
}

3. API Endpoint Mapping

class DimensionalCoherenceEngine:
    def map_to_3d_space(self, nlm_data):
        """Transform NLM-Atlas data to 3D holographic model"""
        return {
            'spatial_coordinates': self.calculate_position(nlm_data),
            'isomorphic_substrate': self.ensure_structural_equivalence(nlm_data),
            'api_endpoints': self.generate_access_patterns(nlm_data)
        }

Zero-Overhead Bridge Architecture

Compilation Strategy

# Low-level compilation for zero polyglot overhead
riftarch-compile:
	$(RIFT_COMPILER) --target=native \
		--optimization=size \
		--strip-polyglot \
		--enable-isomorphic-validation

Bridge Definition

// Canonical isomorphism between components
trait CanonicalBridge {
    fn transform_nlm_to_rift(nlm: NLMAtlasEntry) -> RIFTComponent;
    fn transform_rift_to_nlm(rift: RIFTComponent) -> NLMAtlasEntry;
    
    // Bidirectional guarantee
    fn validate_isomorphism(&self) -> bool {
        let original = self.get_original();
        let transformed = self.transform_nlm_to_rift(original);
        let reversed = self.transform_rift_to_nlm(transformed);
        original == reversed // Perfect isomorphism
    }
}

Implementation Pattern

1. Define Schema

riftarch_schema:
  version: "1.0.0-flexible"
  substrates:
    - name: "service_mesh"
      type: "isomorphic"
      dimensions: [x, y, z]
    - name: "version_graph"
      type: "directed_acyclic"
      coherence: "dimensional"

2. Generate 3D Model

const schema = new RIFTARCHSchema({
  nlmAtlas: 'https://example.com/sitemap.xml',
  dimensions: 3,
  coherence: 'strict'
});

// Generate holographic representation
const model3D = schema.generateHolograph({
  substrates: ['service', 'version', 'cost'],
  isomorphicValidation: true
});

3. Consume via RIFTSDX

# Use RIFTSDX to consume the dimensional model
riftsdx consume --schema=riftarch \
                --model=3d \
                --validate-isomorphism

Minimal Bloat Guarantees

  1. Compile-Time Optimization: All polyglot overhead removed during compilation
  2. Native Binaries: Direct machine code, no interpretation layers
  3. Isomorphic Validation: Structural equivalence verified at build time
  4. Zero Runtime Dependencies: Self-contained executables

API Access Patterns

# Access any dimension via unified API
api = RIFTARCHApi(schema='flexible')

# Query 3D space
result = api.query_dimension(
    x='service.capability',
    y='version.state',
    z='cost.dynamic'
)

# All data accessible through single endpoint
data = api.get_substrate_at_coordinates(x=10, y=20, z=30)

Integration Example

// Complete integration flow
async function integrateRIFTARCH() {
  // 1. Load NLM-Atlas data
  const nlmData = await NLMAtlas.load('sitemap.xml');
  
  // 2. Transform to 3D model
  const model = RIFTARCH.create3DModel(nlmData);
  
  // 3. Validate isomorphism
  const isValid = model.validateCanonicalForm();
  
  // 4. Generate API endpoints
  const endpoints = model.generateEndpoints();
  
  // 5. Compile to native (no overhead)
  await RIFTARCH.compile({
    target: 'native',
    stripPolyglot: true,
    optimize: 'size'
  });
}

Benefits

  • Dimensional Coherence: All data maintains spatial relationships
  • Perfect Isomorphism: Bidirectional transformations without loss
  • Zero Overhead: Compiled tools with no runtime penalties
  • Universal Adoption: Low-level design allows any rifter to integrate

Built for architects who demand flexibility without compromise.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published