-
Notifications
You must be signed in to change notification settings - Fork 0
Run Model from R in cloud
It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for openM++ models:
- openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;
-
oms
JSON web-service API: preferable choice to run models on computational clusters and in cloud.
There is also an excelent R package created by Matthew T. Warkentin available at: mattwarkentin.github.io/openmpp.
Below is an example how to run model in cloud and save results in CSV file using oms
JSON web-service.
There is a similar example how to run model on desktop and do simple loop over parameter using openMpp R package.
Following R example is running very complex OncoSimX-lung model to change only LcScreenSmokingDurationCriteria
parameter:
smokingDuration <- seq(from = 1, by = 2, length.out = 4)
To reduce model run time we are calculating only 2 output tables: Lung_Cancer_Rates_AgeStandard_Table
and Lung_Cancer_Cases_Table
and also using only 6000 simulation cases.
Also we do merge Lung_Cancer_Cases_Table
rows from all model runs and saving it into Lung_Cancer_Cases_Table.csv
#
# Use R to run OncoSimX-lung version 3.6.1.5
# loop over LcScreenSmokingDurationCriteria parameter
# to output tables: Lung_Cancer_Rates_AgeStandard_Table and Lung_Cancer_Cases_Table
#
# If jsonlite or httr is not installed then do:
# install.packages("jsonlite")
# install.packages("httr")
#
library("jsonlite")
library("httr")
# Include openM++ helper functions from your $HOME directory
# on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
# if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
# if you have omsCommon.R in some other location then update path below
#
source("~/omsCommon.R")
#
# Model digest of OncoSimX-lung version 3.6.1.5: "eeb246bd7d3bdb64d3e7aaefeaa828ea"
#
md <- "eeb246bd7d3bdb64d3e7aaefeaa828ea"
# oms web-service URL from file: ~/oms_url.txt
#
apiUrl <- getOmsApiUrl()
# Find first model run to use it as our base run
#
rsp <- GET(paste0(
apiUrl, "model/", md, "/run/status/first"
))
if (http_type(rsp) != 'application/json') {
stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest
# Use openM++ oms web-service to run the model 4 times with 6000 simulation cases
# and different values of LcScreenSmokingDurationCriteria parameter:
#
# OncoSimX-lung_mpi -Parameter.SimulationCases 6000 -Parameter.LcScreenSmokingDurationCriteria 1
# OncoSimX-lung_mpi -Parameter.SimulationCases 6000 -Parameter.LcScreenSmokingDurationCriteria 3
# .... and 2 more Smoking Duration values ....
#
# It is a sequential run, not parallel.
#
# Running 4 OncoSimX-lung_mpi instances: "root" leader process and 3 computational processes
# each computational process using modelling 4 threads
# root process does only database operations and coordinate child workoload.
#
nRuns <- 4
smokingDuration <- seq(from = 1, by = 2, length.out = nRuns)
runDigests <- rep('', nRuns) # model run digests, unique
runNames <- rep('', nRuns) # model run names, may be not unique
for (k in 1:nRuns)
{
print(c("Smoking Duration:", smokingDuration[k]))
rn <- paste0("Smoking_Duration_", toString(smokingDuration[k]))
runNames[k] <- rn
# use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))
# prepare model run options
pd <- list(
ModelDigest = md,
Mpi = list(
Np = 4, # MPI cluster: run 4 processes: 3 for model and rott process
IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
Template = "mpi.OncoSimX.template.txt", # MPI cluster: model run template
Opts = list(
Parameter.LcScreenSmokingDurationCriteria = toString(smokingDuration[k]),
Parameter.SimulationCases = "6000", # use only 6000 simulation cases for quick test
OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
OpenM.SubValues = "12", # use 12 sub-values (sub-samples)
OpenM.Threads = "4", # use 4 modeling threads
OpenM.RunStamp = stamp, # use explicit run stamp
# run name and description in English
OpenM.RunName = rn,
EN.RunDescription = paste("Smoking Duration", toString(smokingDuration[k]), "years")
),
Tables = list("Lung_Cancer_Rates_AgeStandard_Table", "Lung_Cancer_Cases_Table")
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)
# submit request to web-service to run the model
rsp <- POST(paste0(
apiUrl, "run"
),
body = jv,
content_type_json()
)
if (http_type(rsp) != 'application/json') {
stop("Failed to run the model")
}
jr <- content(rsp)
submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run on cluster
runStamp <- jr$RunStamp # model run stamp: not empty if model run started
# wait until model run completed
runDigests[k] <- waitForRunCompleted(stamp, apiUrl, md)
}
# combine all run results into Lung_Cancer_Cases_Table.csv
#
print("All model runs completed, retrive output values...")
allCct <- NULL
for (k in 1:nRuns)
{
cct <- read.csv(paste0(
apiUrl, "model/", md, "/run/", runDigests[k], "/table/Lung_Cancer_Cases_Table/expr/csv"
))
cct$RunName <- runNames[k]
allCct <- rbind(allCct, cct)
}
write.csv(allCct, "Lung_Cancer_Cases_Table.csv", row.names = FALSE)
- Windows: Quick Start for Model Users
- Windows: Quick Start for Model Developers
- Linux: Quick Start for Model Users
- Linux: Quick Start for Model Developers
- MacOS: Quick Start for Model Users
- MacOS: Quick Start for Model Developers
- Model Run: How to Run the Model
- MIT License, Copyright and Contribution
- Model Code: Programming a model
- Windows: Create and Debug Models
- Linux: Create and Debug Models
- MacOS: Create and Debug Models
- MacOS: Create and Debug Models using Xcode
- Modgen: Convert case-based model to openM++
- Modgen: Convert time-based model to openM++
- Modgen: Convert Modgen models and usage of C++ in openM++ code
- Model Localization: Translation of model messages
- How To: Set Model Parameters and Get Results
- Model Run: How model finds input parameters
- Model Output Expressions
- Model Run Options and ini-file
- OpenM++ Compiler (omc) Run Options
- OpenM++ ini-file format
- UI: How to start user interface
- UI: openM++ user interface
- UI: Create new or edit scenario
- UI: Upload input scenario or parameters
- UI: Run the Model
- UI: Use ini-files or CSV parameter files
- UI: Compare model run results
- UI: Aggregate and Compare Microdata
- UI: Filter run results by value
- UI: Disk space usage and cleanup
- UI Localization: Translation of openM++
-
Highlight: hook to self-scheduling or trigger attribute
-
Highlight: The End of Start
-
Highlight: Enumeration index validity and the
index_errors
option -
Highlight: Simplified iteration of range, classification, partition
-
Highlight: Parameter, table, and attribute groups can be populated by module declarations
- Oms: openM++ web-service
- Oms: openM++ web-service API
- Oms: How to prepare model input parameters
- Oms: Cloud and model runs queue
- Use R to save output table into CSV file
- Use R to save output table into Excel
- Run model from R: simple loop in cloud
- Run RiskPaths model from R: advanced run in cloud
- Run RiskPaths model in cloud from local PC
- Run model from R and save results in CSV file
- Run model from R: simple loop over model parameter
- Run RiskPaths model from R: advanced parameters scaling
- Run model from Python: simple loop over model parameter
- Run RiskPaths model from Python: advanced parameters scaling
- Windows: Use Docker to get latest version of OpenM++
- Linux: Use Docker to get latest version of OpenM++
- RedHat 8: Use Docker to get latest version of OpenM++
- Quick Start for OpenM++ Developers
- Setup Development Environment
- 2018, June: OpenM++ HPC cluster: Test Lab
- Development Notes: Defines, UTF-8, Databases, etc.
- 2012, December: OpenM++ Design
- 2012, December: OpenM++ Model Architecture, December 2012
- 2012, December: Roadmap, Phase 1
- 2013, May: Prototype version
- 2013, September: Alpha version
- 2014, March: Project Status, Phase 1 completed
- 2016, December: Task List
- 2017, January: Design Notes. Subsample As Parameter problem. Completed
GET Model Metadata
- GET model list
- GET model list including text (description and notes)
- GET model definition metadata
- GET model metadata including text (description and notes)
- GET model metadata including text in all languages
GET Model Extras
GET Model Run results metadata
- GET list of model runs
- GET list of model runs including text (description and notes)
- GET status of model run
- GET status of model run list
- GET status of first model run
- GET status of last model run
- GET status of last completed model run
- GET model run metadata and status
- GET model run including text (description and notes)
- GET model run including text in all languages
GET Model Workset metadata: set of input parameters
- GET list of model worksets
- GET list of model worksets including text (description and notes)
- GET workset status
- GET model default workset status
- GET workset including text (description and notes)
- GET workset including text in all languages
Read Parameters, Output Tables or Microdata values
- Read parameter values from workset
- Read parameter values from workset (enum id's)
- Read parameter values from model run
- Read parameter values from model run (enum id's)
- Read output table values from model run
- Read output table values from model run (enum id's)
- Read output table calculated values from model run
- Read output table calculated values from model run (enum id's)
- Read output table values and compare model runs
- Read output table values and compare model runs (enun id's)
- Read microdata values from model run
- Read microdata values from model run (enum id's)
- Read aggregated microdata from model run
- Read aggregated microdata from model run (enum id's)
- Read microdata run comparison
- Read microdata run comparison (enum id's)
GET Parameters, Output Tables or Microdata values
- GET parameter values from workset
- GET parameter values from model run
- GET output table expression(s) from model run
- GET output table calculated expression(s) from model run
- GET output table values and compare model runs
- GET output table accumulator(s) from model run
- GET output table all accumulators from model run
- GET microdata values from model run
- GET aggregated microdata from model run
- GET microdata run comparison
GET Parameters, Output Tables or Microdata as CSV
- GET csv parameter values from workset
- GET csv parameter values from workset (enum id's)
- GET csv parameter values from model run
- GET csv parameter values from model run (enum id's)
- GET csv output table expressions from model run
- GET csv output table expressions from model run (enum id's)
- GET csv output table accumulators from model run
- GET csv output table accumulators from model run (enum id's)
- GET csv output table all accumulators from model run
- GET csv output table all accumulators from model run (enum id's)
- GET csv calculated table expressions from model run
- GET csv calculated table expressions from model run (enum id's)
- GET csv model runs comparison table expressions
- GET csv model runs comparison table expressions (enum id's)
- GET csv microdata values from model run
- GET csv microdata values from model run (enum id's)
- GET csv aggregated microdata from model run
- GET csv aggregated microdata from model run (enum id's)
- GET csv microdata run comparison
- GET csv microdata run comparison (enum id's)
GET Modeling Task metadata and task run history
- GET list of modeling tasks
- GET list of modeling tasks including text (description and notes)
- GET modeling task input worksets
- GET modeling task run history
- GET status of modeling task run
- GET status of modeling task run list
- GET status of modeling task first run
- GET status of modeling task last run
- GET status of modeling task last completed run
- GET modeling task including text (description and notes)
- GET modeling task text in all languages
Update Model Profile: set of key-value options
- PATCH create or replace profile
- DELETE profile
- POST create or replace profile option
- DELETE profile option
Update Model Workset: set of input parameters
- POST update workset read-only status
- PUT create new workset
- PUT create or replace workset
- PATCH create or merge workset
- DELETE workset
- POST delete multiple worksets
- DELETE parameter from workset
- PATCH update workset parameter values
- PATCH update workset parameter values (enum id's)
- PATCH update workset parameter(s) value notes
- PUT copy parameter from model run into workset
- PATCH merge parameter from model run into workset
- PUT copy parameter from workset to another
- PATCH merge parameter from workset to another
Update Model Runs
- PATCH update model run text (description and notes)
- DELETE model run
- POST delete model runs
- PATCH update run parameter(s) value notes
Update Modeling Tasks
Run Models: run models and monitor progress
Download model, model run results or input parameters
- GET download log file
- GET model download log files
- GET all download log files
- GET download files tree
- POST initiate entire model download
- POST initiate model run download
- POST initiate model workset download
- DELETE download files
- DELETE all download files
Upload model runs or worksets (input scenarios)
- GET upload log file
- GET all upload log files for the model
- GET all upload log files
- GET upload files tree
- POST initiate model run upload
- POST initiate workset upload
- DELETE upload files
- DELETE all upload files
Download and upload user files
- GET user files tree
- POST upload to user files
- PUT create user files folder
- DELETE file or folder from user files
- DELETE all user files
User: manage user settings
Model run jobs and service state
- GET service configuration
- GET job service state
- GET disk usage state
- POST refresh disk space usage info
- GET state of active model run job
- GET state of model run job from queue
- GET state of model run job from history
- PUT model run job into other queue position
- DELETE state of model run job from history
Administrative: manage web-service state
- POST a request to refresh models catalog
- POST a request to close models catalog
- POST a request to close model database
- POST a request to delete the model
- POST a request to open database file
- POST a request to cleanup database file
- GET the list of database cleanup log(s)
- GET database cleanup log file(s)
- POST a request to pause model run queue
- POST a request to pause all model runs queue
- PUT a request to shutdown web-service